MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY (MIST)

SYLLABUS OF BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING

DEPARTMENT OF BIOMEDICAL ENGINEERING (BME)

March 2024

COMMITTEE FOR SYLLABUS REVIEW - BME DEPT, MIST

The undergraduate course curriculum of the Department of Biomedical Engineering (BME), Military Institute of Science and Technology (MIST) has been reviewed by the committee as mentioned below and will be implemented from academic session 2024-2025 (Batch BME-10) and onwards.

A. President

Brigadier General S M Zia-Ul-Azim, ndc, afwc, psc Head, Department of Biomedical Engineering Dean, Faculty of Science and Engineering Military Institute of Science and Technology

B. Internal Members

Md Enamul Hoque, PhD Professor, Dept of BME Military Institute of Science and Technology

2.

Lieutenant Colonel Md Maruf Hasan, PhD, EME Instructor Class-A, Dept of BME

Military Institute of Science and Technology

Lieutenant Colonel Md Jafar Sharif, PhD, Sigs Instructor Class-A, Dept of Sci & Hum Military Institute of Science and Technology

4. Lieutenant Colonel Muhammad Nazrul Islam, PhD, Sigs Instructor Class-A, Dept of CSE Military Institute of Science and Technology Lieutenant Colonel Hussain Md Abu Nyeem, PhD, EME Instructor Class-A, Dept of EECE Military Institute of Science and Technology Lieutenant Colonel Md Nur-E-Mostafa, MPhil, PhD, Engr Instructor Class-A, Dept. of Sci & Hum Military Institute of Science and Technology Major Mohammad Fateul Abedeen, AEC Instructor Class-B, Dept of Sci & Hum Military Institute of Science and Technology Md Asadur Rahman, PhD Assistant Professor, Dept of BME Military Institute of Science and Technology 9. Md Sharif Hossain, PhD Assistant Professor, Dept of Sci & Hum Military Institute of Science and Technology

10	A-on
10	Akid Ornob
	Assistant Professor, Dept of BME Military Institute of Science and Technology
	Minute institute of science and recimiology
	A)
11	
	Md Tobibul Islam Lecturer, Dept of BME
	Military Institute of Science and Technology
	$ \wedge$ \wedge
12	Rafid Buksh
	Lecturer, Dept of Sci & Hum
	Military Institute of Science and Technology
	11:
13	Talima
13	Taslima Akter
	Lecturer, Dept of Sci & Hum
	Military Institute of Science and Technology
14	y v
	Md. Mashfiqur Rahman Abrar
	Lecturer, Dept. of Sci & Hum Military Institute of Science and Technology
	•
C. <u>BI</u>	JP Members
	\circ
1	- Al-mmy
1.	Brigadier General Md Mahbubur Rahman Siddiqui, ndc, afwc, psc, MPhil
	Inspector of Colleges
	Bangladesh University of Professionals (BUP)

Brigadier General Md Mustafa Kamal, SGP Dean, Faculty of Science & Technology Bangladesh University of Professionals (BUP)

D. External Members

JC: 4

Muhammad Tarik Arafat, PhD Professor & Head, Department of Biomedical Engineering Bangladesh University of Engineering and Technology

Jerdom.

Jahid Ferdous, PhD

Associate Professor, Department of Biomedical Engineering Bangladesh University of Engineering and Technology

3. Abdul Wahab Khan, PhD
Incepta Vaccine Ltd, Dhaka

E. Members Secretary

Alvee Hassan

Lecturer, Department of Biomedical Engineering Military Institute of Science and Technology

CONTENTS

	IAPTE ENERA	R 1 AL INFORMATION	1
1.1	Inti	roduction to MIST	1
1.2	Vis	ion and Mission of MIST	1
1.3	Mo	tto and Values of MIST	2
1.4	Eli	gibility of Students for Admission in MIST	2
1.5	Nu	mber of Seats	3
1.6	Ad	mission Procedure	5
	1.6.1	Syllabus for Admission Test.	5
	1.6.2	Final Selection	5
	1.6.3	Medical Checkup	5
1.7	Stu	dents Withdrawal Policy	5
	1.7.1	For Poor Academic Performance	5
	1.7.2	Withdrawal on Disciplinary Ground	6
	1.7.3	Withdrawal on Own Accord.	7
	IAPTE	R 2 AND REGULATIONS FOR UNDERGRADUA	8 TE PROGRAMS
ΑT	MIST		8
2.1	Int	roduction	8
2.2	The	e Course System	8
2.3	Nu	mber of Terms in a Year	9
2.4	Du	ration of Terms	9
2.5	Co	urse Pattern and Credit Structure	9
2.6	Co	urse Designation System	9
2.7	Ass	signment of Credits	10
2.8	Tyl	pes of Courses	11

			Contents
2.9	Co	urse Offering and Instruction	11
2.10) Tea	acher Student Interaction	11
2.1	l Stu	dent's Adviser	12
2.12	2 Co	urse Registration	12
	2.12.1	Registration Procedure	12
	2.12.2	Pre-conditions for Registration	12
	2.12.3	Registration Deadline.	13
	2.12.4	Penalty for Late Registration	13
	2.12.5	Limits on the Credit Hours to be taken	13
	2.12.6	Course Add/Drop	13
	2.12.7	Withdrawal from a Term	14
2.13	3 The	e Grading System	14
2.14	4 Dis	stribution of Marks	15
	2.14.1	Theory	15
	2.14.2	Laboratory/Sessional/Practical Examinations	16
	2.14.3	Sessional Course in English	17
	2.14.4	Class Attendance	17
	2.14.5	Calculation of GPA	18
	2.14.6	Impacts of Grade Earned	19
2.15	5 Cla	ssification of Students	20
	2.15.1	Definition of Graduating Student	21
2.16	6 Per	formance Evaluation	21
2.17	7 Ap	plication for Graduation and Award of Degree	21
	2.17.1	Minimum Earned Credit and GPA Requirement for Obtaining Degree	21
	2.17.2	Minimum Earned Credit and GPA Requirement for Obtaining Degree	22
2.18	3 Tin	ne Limits for Completion of Bachelor's Degree	22
2.19) Att	endance, Conduct and Discipline	22
2.20) Tea	acher-Student Interaction	22
2.2	l Ab	sence During a Term	23
2.22	2 Rec	cognition of Performance	23
2.23	3 Ty ₁	pes of Different Examination	23

			Contents
2.2	4 Rul	es of Different Examinations	24
	2.24.1	Term Final Examination	24
	2.24.2	Supplementary Examination	24
	2.24.3	Improvement Examination	25
2.2	5 Irre	gular Graduation	26
2.2	6 Mir	nimum Earned Credit and CGPA Requirement for Obtaining Degree	26
2.2	7 Cor	nsequences of Failing in Sessional Courses	26
2.2	8 Wit	thdrawal for Poor Performance	26
2.2	9 SU	MMARY OF MIST EXAMINATION POLICY-2020	28
CH	IAPTE	R 3	29
DE	PART	MENT OF BIOMEDICAL ENGINEERING (BME)	29
3.1	Intr	roduction to the Program	29
3.2	Vis	ion and Mission of the Program	29
3.3	Pro	gram Educational Objective (PEOs)	30
3.4	Pro	gram Outcomes	30
3.5	Gei	neric Skills	34
3.6	Cur	riculum/ Skill Mapping	35
CH	IAPTE	R 4	36
CC	URSE	CURRICULUM FOR BACHELOR DEGREE IN BME	36
4.1	Cou	urse Schedule	36
4.2	Cor	ntact Hours and Credit Hours Distribution in Eight Terms	37
4.3	Fin	al Year	37
4.4	BM	IE Courses	38
	4.4.1	List of Core Courses – BME	38
	4.4.2	List of Courses – Basic Science and Mathematics	39
	4.4.3	List of Courses - General Education or Non-Skill and Language/ Commu	ınicative
	Languag		40
	4.4.4	List of Core Courses – Interdisciplinary	40

	4.4.5	DWE EL . C	Contents
	4.4.5	BME Elective Courses	41
	4.4.5		41
	4.4.5		41
	4.4.5	1 (2 0)	41
	4.4.5		41
4.5	Ter	m-wise Distribution of Courses	42
	4.5.1	LEVEL 1, SPRING	42
	4.5.2	LEVEL 1, FALL	42
	4.5.3	LEVEL 2, SPRING	43
	4.5.4	LEVEL 2, FALL	43
	4.5.5	LEVEL 3, SPRING	44
	4.5.6	LEVEL 3, FALL	44
	4.5.7	LEVEL 4, SPRING	45
	4.5.8	LEVEL 4, FALL	45
	4.5.9	List of Elective Courses	46
CE	IAPTE	D 5	47
		S OFFERED BY OTHER DEPARTMENTS	47
CC	OKSE	S OFFERED DI OTHER DEI ARTMENTS	7,
5.1	Dep	partment of Science and Humanities	47
	5.1.1	Level-1, Spring	47
	5.1.1	.1 PHY 125 Waves and Oscillations, Optics and Modern Physics	47
	5.1.1	.2 MATH 101 Differential and Integral Calculus	51
	5.1.1	.3 CHEM 103 General Chemistry	56
	5.1.1	.4 CHEM 104 Chemistry Sessional	60
	5.1.1	.5 GES 101 Fundamentals of Sociology	63
	5.1.2	Level-1, Fall	67
	5.1.2	.1 PHY 127 Structure of matter, Electricity, Magnetism, and Mechanics	67
	5.1.2	.2 PHY 128 Physics Sessional	72
	5.1.2	.3 MATH 105 Vector Analysis, Matrix and Coordinate Geometry	76
	5.1.2	.4 CHEM 125 Physical and Bio-organic Chemistry	81
	5.1.2	.5 LANG 102 Communicative English I	85
	5.1.2	.6 GEBS 101 Bangladesh Studies	90
	5.1.3	Level-2, Spring	94

		5121	MATH 205 Diff and I Francis I also the formal Francis True Company	Contents
		5.1.3.1	· ·	94
		5.1.3.2		98
			LANG 202 Communicative English II	103
	5 1		LANG 204 Bangla Language and Literature	107
	5.1		Level-2, Fall	111
			MATH 231 Complex Variables and Linear Algebra	111
	5.1		Level-3, Spring	115
		5.1.5.1		115
	5.1		Level-4, Spring	119
		5.1.6.1		119
	5.1	.7	Level-4, Fall	124
		5.1.7.1	,	124
		5.1.7.2		128
5.2		Depa	extment of Electrical, Electronic and Communication Engineering	132
	5.2	.1	Level-1, Spring	132
		5.2.1.1	EECE 191 Principles of Electrical Engineering	132
		5.2.1.2	EECE 192 Principles of Electrical Engineering Sessional	135
	5.2	.2	Level-2, Spring	139
		5.2.2.1	EECE 291 Electronic Circuits and Devices	139
		5.2.2.2	EECE 292 Electronic Circuits and Devices Sessional	143
	5.2	.3	Level-3, Spring	146
		5.2.3.1	EECE 391 Digital Electronics	146
		5.2.3.2	EECE 392 Digital Electronics Sessional	150
5.3		Depa	rtment of Computer Science and Engineering	153
	5.3	.1	Level-2, Spring	153
		5.3.1.1	CSE 291 Computer Programming	153
		5.3.1.2	CSE 292 Computer Programming Sessional	157
5.4		Depa	rtment of Mechanical Engineering	160
	5.4	.1	Level-2, Fall	160
		5.4.1.1	ME 291 Principles of Mechanical Engineering	160
CH	IAF	TER	2.6	164
CC)UF	RSE (OFFERED BY BME DEPARTMENT	164

			Contents
6.1	Core	e Course Offered	164
	6.1.1	BME 101 Introduction to Biomedical Engineering	164
	6.1.2	BME 104 CAD in Biomedical Engineering Sessional	167
	6.1.3	BME 105 Human Anatomy	170
	6.1.4	BME 201 Human Physiology	174
	6.1.5	BME 203 Biochemistry	178
	6.1.6	BME 204 Biochemistry Sessional	182
	6.1.7	BME 205 Biofluid Mechanics and Heat Transfer	185
	6.1.8	BME 206 Biofluid Mechanics and Heat Transfer Sessional	189
	6.1.9	BME 207 Biomedical Instrumentation and Measurements	192
	6.1.10	BME 208 Biomedical Instrumentation and Measurements Sessional	196
	6.1.11	BME 301 Statistics and Numerical Methods for Biomedical Engineers	199
	6.1.12	BME 302 Statistics and Numerical Methods for Biomedical Engineers Session	nal 204
	6.1.13	BME 303 Biomechanics	207
	6.1.14	BME 304 Biomechanics Sessional	212
	6.1.15	BME 305 Biomedical Signal Processing	215
	6.1.16	BME 306 Biomedical Signal Processing Sessional	218
	6.1.17	BME 307 Medical Imaging	221
	6.1.18	BME 309 Biomedical Transport Phenomenon	226
	6.1.19	BME 311 Embedded Systems and Interfacing	230
	6.1.20	BME 312 Embedded Systems and Interfacing Sessional	234
	6.1.21	BME 313 Biomedical Image Processing	237
	6.1.22	BME 314 Biomedical Image Processing Sessional	241
	6.1.23	BME 315 Biomaterials	244
	6.1.24	BME 316 Biomaterials Sessional	248
	6.1.25	BME 318 Biomedical Engineering Design Sessional I	252
	6.1.26	BME 300 Industrial Training	254
	6.1.27	BME 401 Diagnostic and Therapeutic Equipment	316
	6.1.28	BME 403 Molecular Biology for Engineers	320
	6.1.29	BME 404 Molecular Biology for Engineers Sessional	324
	6.1.30	BME 405 Healthcare Technology Management	327
	6.1.31	BME 407 Rehabilitation Engineering	331
	6.1.32	BME 409 Tissue Engineering	335

			Contents
	6.1.33	BME 412 Biomedical Engineering Design Sessional II	341
	6.1.34	BME 400 Final Year Design and Research Project	344
6.2	Elec	etive Course Offered	349
	6.2.1	Group-I (Instrumentation)	349
	6.2.1	1 BME 411 Physiological Control System	349
	6.2.1	2 BME 413 Virtual Bioinstrumentation	353
	6.2.1	3 BME 415 Biophotonics	358
	6.2.1	4 BME 417 Equipment in Radiology and Radiotherapy	362
	6.2.2	Group-II (Regenerative Medicine)	367
	6.2.2	1 BME 419 Drug Development and Delivery System	367
	6.2.2	2 BME 421 Nanotechnology in Biomedicine	370
	6.2.2	3 BME 423 Artificial Organ Development	374
	6.2.2	4 BME 425 Bioinformatics	378
	6.2.3	Group-III (Imaging)	383
	6.2.3	1 BME 427 Advanced Biomedical Signal Processing	383
	6.2.3	2 BME 429 Nuclear Medicine	387
	6.2.3	3 BME 431 Biomedical Data Science	391
	6.2.4	Group-IV (Biomechanics and Rehabilitation Engineering)	396
	6.2.4	1 BME 433 Applied Biofluid Mechanics	396
	6.2.4	2 BME 435 Biomedical Implants and Braces	400
	6.2.4	3 BME 437 Neuroscience and Neural Engineering	405
	6.2.4	4 BME 439 Biofabrication	408
CH	APTE]	R 7	415
AN	NEX-A		415
7.1	Prog	gram Outcomes	415
7.2	Kno	owledge Profile	416
7.3		ge of Complex Engineering Problem Solving	416
7.4		ge of Complex Engineering Activities	417
7.5	B100	om Taxonomy at a Glance	418
CH	APTE	R 8	419
AN	NEX-E		419

		Contents
8.1	CO-PO Mapping for Entire Program	419
8.2	CO-PO Mapping by Different Levels	420
8.3	CO-PO Mapping for Sessional and Theory	420
8.4	CO-PO Mapping for Departmental & Non-Departmental Courses	421
8.5	CO-PO Mapping for Non-Departmental Courses	421

CHAPTER 1

GENERAL INFORMATION

1.1 Introduction to MIST

The necessity of establishing a technical institute for the Bangladesh Armed Forces was felt in the late eighties. In the absence of such an institution, officers of Bangladesh Armed Forces had been graduating from Bangladesh University of Engineering and Technology (BUET), Bangladesh Institute of Technology (BIT) and other foreign institutions of science and technology. Intending to meet the increasing demand for the development and dissemination of engineering and technological knowledge, Bangladesh Armed Forces established the Military Institute of Science and Technology (MIST) that promises to provide facilities for higher technical education both for the officers of Bangladesh Armed Forces as well as for civil students from home and abroad. The motto of MIST is —Technology for Advancement. Founded on 19 April 1998, MIST started its journey on 31 January 1999 by offering a four-year bachelor's degree in Civil Engineering. Bachelor degree in Computer Science Engineering course started in 2001. Bachelor courses in Electrical, Electronic & Communication Engineering and Mechanical Engineering started its journey from 2003. Bachelor of Science program on Aeronautical Engineering (AE) and Naval Architecture and Marine Engineering (NAME) program were started from 2008-2009 and 2012-2013 respectively. Besides, four new departments started their academic session from 2014-2015, i.e. Nuclear Science & Engineering (NSE), Biomedical Engineering (BME), Architecture (Arch) and Environmental, Water Resources & Coastal Engineering (EWCE).

1.2 <u>Vision and Mission of MIST</u>

Vision: To be a centre of excellence for providing advanced quality education in the field of science, engineering, and technology advanced to create diverse quality leaders and professionals and conduct innovative research to meet the national and global needs and challenges.

Mission: MIST is working on the following missions:

- a. To develop as a Centre of Excellence for providing comprehensive education and conducting creative and innovative research in diverse disciplines of engineering, technology, science, management and related fields.
- b. To produce technologically advanced intellectual leaders and professionals with high moral and ethical values to meet the national and global needs for sustainable socioeconomic development.

- c. To provide consultancy, advisory and testing services to government, industrial, educational and other organizations to render technical support for widening practical knowledge and to contribute to sustainable socio-economic advancement.
- d. To extend collaborative and research activities with national and international communities for life-long learning and long term interaction with the academician and industry.

1.3 Motto and Values of MIST

Motto: As an Institution without gender biasness, MIST is steadily upholding its motto "Technology for Advancement" and remains committed to contributing to the wider spectrum of national educational arena, play a significant role in the development of human resources and gradually pursuing its goal to grow into a 'Centre of 'Excellence'.

Values:

- a. Integrity and Respect-We embrace honesty, inclusivity, and equity in all that we do.
- **b.** Honesty and Accountability-Our actions reflect our values, and we are accountable for both.
- **c. Dedication to Quality and Intellectual Rigour-**We strive for excellence with energy, commitment, and passion.
- **d. Pursuit of Innovation**-We cultivate creativity, adaptability, and flexibility in our student, faculty, and staff.

1.4 Eligibility of Students for Admission in MIST

The students must fulfill the following requirements:

- a. **Bangladeshi Students.** Minimum qualifications to take part in the admission test are as follows:
 - 1) **SSC Examination (or Equivalent).** The applicant must have passed the examination in Science Group obtaining a minimum GPA of 4.00 (without fourth subject) on the scale of 5.0. Only the applicants who passed SSC or Equivalent Examination in Corresponding current and previous one year can apply.
 - 2) **HSC Examination (or Equivalent).** The applicants passed in current and previous one year must obtain minimum total grade point 17 in four subjects (Mathematics, Physics, Chemistry and English).

- 3) GCE ('O' and 'A' Levels or Equivalent) who have passed HSC or equivalent examination in the current year or one year before the notification for admission can apply.
 - a) The applicant who passed in current and previous one year must have qualified with minimum 'B' grade in five subjects including Mathematics, Physics, Chemistry, and English in GCE 'O' Level.
 - b) The applicant who passed in current and previous one year must have minimum two 'B' grades and one 'C' grade in Mathematics, Physics, and Chemistry in GCE 'A' Level.
- 4) Applicants interested in Biomedical Engineering must have Biology at HSC or equivalent level with a minimum grade point of 'A-' / GCE 'A' or equivalent level with a minimum grade point of 'C'.
- b. **Foreign Students.** Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through AFD of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:
 - 1) Educational qualifications as applicable for Bangladeshi civil students or equivalent.
 - 2) Must have security clearance from respective Embassy/High Commission in Bangladesh.
 - 3) Sex: Male and Female.

1.5 Number of Seats

The highest number of seats for 04 (Four) years Bachelor Degree in Engineering programs (Unit -A) and 5 (Five) years Bachelor Degree of Architecture programs are as follows:

Allocation of Seats

Ser	Unit	Department	Seats
1		Civil Engineering (CE)	120
2	A	Computer Science and Engineering (CSE)	120

^{*} In the event of non-availability of foreign students, Bangladeshi civil candidates will fill up the vacancies.

General Information

			J
3		Electrical, Electronic & Communication Engineering (EECE)	120
4		Mechanical Engineering (ME)	120
5		Aeronautical Engineering (AE)	100
6		Naval Architecture and Marine Engineering (NAME)	40
7		Biomedical Engineering (BME)	40
8		Nuclear Science and Engineering (NSE)	40
9		Environmental, Water Resources and Coastal Engineering (EWCE)	60
10		Industrial and Production Engineering (IPE)	50
11		Petroleum and Mining Engineering (PME	25
12	В	Architecture (Arch)	25
		Total=	860

The total number is 860. In general, about 50% seats will be allocated to military officers. However, in case of the requirement of military students vacancy is less in any particular year, the deficient vacancy will be filled up by civil students. MIST also maintains quota as mentioned below:

Ser	Quota Allocation	Seats	
1	General Candidates	54%	
2	Children of Military Personnel	40%	
3	3 Children of Freedom Fighters		
4	Tribal Citizen	1%	
5	International Students	3%	
	Total=	100%	

1.6 Admission Procedure

1.6.1 Syllabus for Admission Test.

Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English (comprehension and functional) subjects of HSC examinations of all boards of secondary and higher secondary school certificates. Admission test will be conducted out of 200 marks and the distribution of marks is given below:

Ser.	Subjects	Marks
a.	Mathematics	90
b.	Physics	70
c.	Chemistry	30
d.	English	10
	Total=	200

1.6.2 Final Selection

Students will be selected on the basis of results of the admission test. The individual choice for selection of departments will be given preference as far as possible. In case of tie in the result of admission test, the difference will be judged on the basis of marks obtained in Mathematics, Physics, Chemistry and English respectively in admission test.

1.6.3 Medical Checkup

Civil candidates selected through admission test will go for medical checkup in MIST/CMH. If the medical authority considers any candidate unfit for study in MIST due to critical/contagious/mental diseases as shown in medical policy of MIST will be declared unsuitable for admission.

1.7 Students Withdrawal Policy

1.7.1 For Poor Academic Performance

The undergraduate (B.Sc.) Engineering programs for all engineering disciplines are planned for 04 regular levels, comprising of 08 regular terms for Architecture program, it is planned for 3 & regular levels, comprising of 10 regular terms. It is expected that all students will

earn degree by clearing all the offered courses in the stipulated time. In case of failure, the following policies will be adopted:

- a. Students failing in any course/subject will have to clear/pass the said course/subject by appearing it in supplementary/self-study (for graduating student) examination as per examination policy.
- b. Students may also retake the failed subject/course in regular term/short term as per Examination policy.
- c. Maximum grading for supplementary/self-study examination etc. of failed subjects will be B+ as per examination policy.
- d. One student can retake/reappear in a failed subject/course only twice. However, with the Permission of Academic Council of MIST, a student may be allowed for third time as last chance.
- e. In case of sickness, which leads to missing of more than 40% classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council, MIST. However, he/she has to complete the whole undergraduate program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.
- f. Minimum credit requirement for the award of bachelor's degree in Engineering (B.Sc. Engg) and Architecture (B. Arch) will be decided by the respective department as per existing rules. However, the minimum CGPA requirement for obtaining a bachelor degree in engineering and Architecture is 2.20.
- g. Whatever may be the cases, students have to complete the whole undergraduate Program within 06 (six) academic years from the date of registration.
- h. All other terms and condition of MIST Examination Policy remain valid.

1.7.2 Withdrawal on Disciplinary Ground

- **a. Unfair Means.** Adoption of unfair means may result in expulsion of a student from the programme and so from the Institution. The Academic Council will authorize such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:
 - Communicating with fellow students for obtaining help in the examination

- Copying from another student's script/ report /paper
- > Copying from desk or palm of a hand or other incrimination documents
- Possession of any incriminating document whether used or not
- **b. Influencing Grades.** Academic Council may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.
- c. Other Indiscipline Behaviors. Academic Council may withdraw/expel any student on disciplinary ground if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/program or is considered detrimental to 'MIST's image.
- **d.** Immediate Action by the Disciplinary Committee of MIST. The Disciplinary Committee, MIST may take immediate disciplinary action against any student of the institution. But later the approval of BUP has to be taken. In case of withdrawal/expulsion, the matter will have to be referred later to the next academic Council, MIST.

1.7.3 Withdrawal on Own Accord.

- **a. Permanent Withdrawal.** A student who has already completed some courses and has not performed satisfactorily may apply for a withdrawal.
- **b.** Temporary Withdrawal. A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to approval of Academic Council of MIST, but he/she has to complete the whole program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.
- c. **Permanent Expulsion** The term 'Permanent Expulsion' means expulsion permanently from the institution on disciplinary ground. A student, if expelled permanently will never be allowed to re-enter the course or similar program in MIST and be subjected to other terms and conditions as set by the authority while approving the permanent expulsion order.
- **d. Temporary Expulsion** The term 'Temporary Expulsion' means expulsion from an academic course/program for a certain period on disciplinary ground. A student, if expelled temporarily, may be allowed to re-enter the course/program on expiry of the punishment period and on fulfilment of other terms and conditions (if any) as set by the authority while approving the temporary expulsion order.

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMS AT MIST

2.1 <u>Introduction</u>

MIST has introduced course system for undergraduate studies from the academic session 2017-18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering undergraduate curriculum through the Course System. This will be introduced with an aim of creating a continuous, even and consistent workload throughout the term for the students.

2.2 The Course System

a. The salient features of the Course System are as follows:

Number of theory courses will be generally 5 in each term. However, with the recommendation of course coordinator and Head of the Department, Commandant MIST may allow relaxation in this regard. This relaxation is to be reported to Academic Council of MIST.

- 1) Students will not face any level repeat for failing
- 2) Students will get scope to improve their grading
- 3) Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences
- 4) Continuous evaluation of 'students' performance
- 5) Promotion of student-teacher interaction and contact
- **b.** Beside the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics and chemistry. Due importance is also given on the study of several subjects in humanities and social sciences.
- **c.** The first two years of 'bachelor's degree programs generally consist of courses on basic engineering, general science and humanities subjects; while the third and subsequent years focus on specific disciplines.

2.3 Number of Terms in a Year

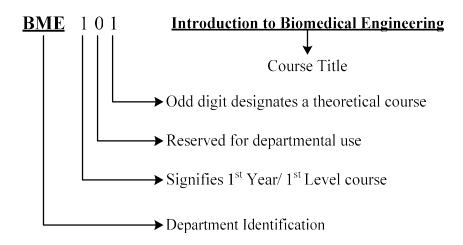
There will be two terms Spring Term (Jan-Jun) and Fall Term (Jul-Dec) in an academic year.

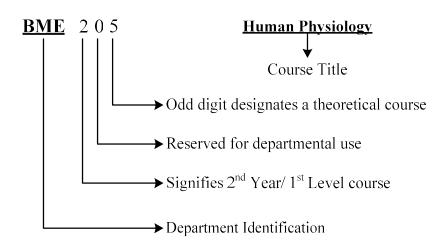
2.4 **Duration of Terms**

The duration of each of Spring Term and Fall Term (maximum 22 weeks) may be as under:

Ser	Events	Duration
1.	Classes before Midterm	7 weeks
2.	Midterm Vacation	1 week
3.	Classes after Midterm	7 weeks
4.	Makeup Classes and Preparatory leave	2/3 weeks
5.	Term Final Examination	2/3 weeks
6.	Term End Vacation	1/2 weeks

2.5 Course Pattern and Credit Structure


The undergraduate program is covered by a set of theoretical courses along with a set of laboratories (sessional) courses to support them.


2.6 <u>Course Designation System</u>

Each course is designated by a maximum of four-letter code identifying the department offering the course followed by a three-digit number having the following interpretation:

- a. The first digit corresponds to the year/level in which the course is normally taken by the students.
- b. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.
- c. The last digit is an odd number for theoretical courses and an even number for sessional courses.

The course designation system is illustrated as follows:

2.7 Assignment of Credits

The assignment of credits to a theoretical course follows a different rule from that of a sessional course.

- a. Theoretical Courses: One lecture per week per term is equivalent to one credit.
- **b. Sessional Courses:** Credits for sessional courses is half of the class hours per week per term.

c. Credits are also assigned to project and thesis work taken by the students. The amount of credits assigned to such work varies from one discipline to another.

2.8 Types of Courses

The types of courses included in the undergraduate curricula are divided into the following groups:

- **a.** Core Courses: In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has to complete all designated core courses of his/her discipline.
- **b.** Prerequisite Courses: Some of the core courses are identified as prerequisite courses for a specific subject.
- c. Optional Courses: Apart from the core courses, the students can choose from the set of optional courses. A required number of optional courses from a specified group have to be chosen.

2.9 Course Offering and Instruction

- **a.** The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department.
- **b.** Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of 'students' performance. Depending on the strength of registered students (i.e. on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

2.10 <u>Teacher Student Interaction</u>

The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction, each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

2.11 Student's Adviser

- a. One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.
- b. However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the 'student's specific plan of study and monitor subsequent progress of the student.
- c. For a student of second and subsequent terms, the number and nature of courses for which he/she can register are decided on the basis of academic performance during the previous term. The adviser may permit the student to drop one or more courses based on previous academic performance.

2.12 Course Registration

Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.

2.12.1 Registration Procedure

At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her adviser. The date, time and venue of registration are announced in advance by the ''Registrar's Office. Counseling and advising are accomplished at this time. It is absolutely essential that all the students be present for registration at the specified time.

2.12.2 Pre-conditions for Registration

- a. For first year students, department-wise enrollment/admission is mandatory prior to registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrolment slip.
- b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.

c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of prerequisite courses. However, even if a student fails in a prerequisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the prerequisite course provided that his/her attendance and performance in the continuous assessment of the mentioned prerequisite course is found to be satisfactory.

2.12.3 Registration Deadline.

Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic commitments that prohibit enrollment prior to the last date of registration.

2.12.4 Penalty for Late Registration

Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

2.12.5 Limits on the Credit Hours to be taken

- **a.** A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.
- **b.** In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Comdt, a lesser number of credit hours to suit individual requirements. Such cases are also applicable to students of Level 4 requiring less than 15 credit hours for graduation.

2.12.6 Course Add/Drop

a. A student has some limited options to add or drop courses from the registration list. Addition of courses is allowed only within the first two weeks of a regular term and only during the first week of a short term. Dropping a course is permitted within the first four weeks of a regular term and two weeks of a short term.

- **b.** Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the 'student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the 'Registrar's Office, where the required numbers of photocopies are made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student.
- **c.** All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

2.12.7 Withdrawal from a Term

If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree-awarding department for total withdrawal from the term before commencement of term final examination. However, application may be considered during term final examination in special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

2.13 The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment and a term final examination. The assessments for sessional courses are made by evaluating performance of the student at work during the class, viva-voce during laboratory hours and quizzes. Besides that, at the end there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightages. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree. Letter grades and corresponding grade points will be given as follows:

Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to below 80%	A	3.75
70% to below 75%	A-	3.50
65% to below 70%	B+	3.25
60% to below 65%	В	3.00
55% to below 60%	B-	2.75
50% to below 55%	C+	2.50
45% to below 50%	С	2.25
40% to below 45%	D	2.00
below 40%	F*	0.00
Incomplete	I	-
Withdrawal	W	-
Capstone Project/Thesis Continuation	X	-

^{*}Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA).

2.14 <u>Distribution of Marks</u>

2.14.1 Theory

Forty percent (40%) of marks of a theoretical course shall be allotted for continuous assessment, i.e. quizzes, home assignments, class tests, observations/ class participation and class attendance. This mark must be submitted to Office of the Controller of Examinations before commencement of final exam. The rest of the marks will be allotted to the Term Final Examination. The duration of final examination will be three (03) hours. The scheme of continuous assessment that a particular teacher would follow for a course will be announced on the first day of the classes.

Rules and Regulations for Undergraduate Programs at MIST

Distribution of marks for a given course per credit is as follows	Marks
Class Performance	5%
Class Attendance	5%
Class Test/ Assignment	20%
Midterm Assessment (Exam/Project)	10%
Final Examination (Section A & B)	60%
Total =	100%

Note:

- a. In final exam, each section can be used for achieving not more than two course outcomes (COs). The remaining COs should be attained from mid-term assessment or class tests. Course teacher has to inform the student the beginning of the terms.
- b. Course teacher of a particular course has to inform the department whether he/she wants to assess mid-term through exam or project within first two weeks of beginning of a term. The duration of mid-term examination should not be more than 50 minutes which has to be conducted in between 6th to 9th week of a semester. If mid-term assessment is done through project, then there should be project report and presentation.
- c. The weightage of class performance can be assessed through checking attentiveness during classes or arranging unnoticed pop quizzes.
- d. The number of class tests shall be n for 3.0 and above credit courses and (n-1) shall be considered for grading where n is the number of credits of the course. However, for courses having credits below 3.0, the considered class tests shall be 2 out of 3.
- e. All class test will carry 20 marks each. Exam software system will finally convert these achieved marks into total class test marks as per credit hour. i.e for n=1(20), n=2 (40), n=3 (60), n=4(80), etc.
- f. Irrespective of the result of the continuous assessment (class performance, class test, mid-term assessment), a student has to appear in the final examination (where applicable) for qualifying/passing the concern course/ subject.

2.14.2 Laboratory/Sessional/Practical Examinations

Laboratory/ Sessional courses are designed and conducted by the concerned departments. Examination on sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by

the respective department. Students will be evaluated in the laboratory/ sessional courses on the basis of the followings:

a.	Conduct of Lab Tests/Class Performance	25%
b.	Report Writing/ Programming	15%
c.	Mid-Term Evaluation (exam/project/assignment)	20%
d.	Final Evaluation (exam/project/assignment)	30%
e.	Viva Voce/ Presentation	10%
	100%	

Note: the above distribution of percentage is a general guideline. Department can rearrange to some extent if required.

2.14.3 Sessional Course in English

The distribution will be as under:

a.	Class performance/observation	10
b.	Written Assignment	15
c.	Oral Performance	25
d.	Listening Skill	10
e.	Group Presentation	30
f.	Viva Voce	10
	Total Percentage=	100%

2.14.4 Class Attendance

Class attendance may be considered as a part of continuous assessment. No mark should be allotted for attending classes.

Collegiate and Non-collegiate

Students having class attendance of 85% or above in individual subject will be treated as collegiate, and less than 85% and up to 70% will be treated as non-collegiate in that subject. The non-collegiate student(s) may be allowed to appear at the examination subject to payment of non-

collegiate fee/fine of an amount fixed by MIST/BUP. Students having class attendance below 70% will be treated as dis-collegiate and will not be allowed to appear at the examination and treated as fail. But in a special case such students may be allowed to appear in the examination with the permission of Commandant and it must be approved by the Academic Council.

2.14.5 Calculation of GPA

Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C_1 , C_2 , ..., C_n and his grade points in these courses are G_1 , G_2 ,, G_n , respectively, then

$$GPA = \frac{Grade\ points\ earned\ in\ the\ semester}{Credits\ completed\ in\ the\ semester}$$

 $= \frac{Summation \ of \ (Credit \ hours \ in \ a \ course * Grade \ point \ earned \ in \ that \ course)}{Total \ number \ of \ credit \ hours \ completed}$

$$=\frac{\sum_{i=1}^{n}Ci*Gi}{\sum_{i=1}^{n}Ci}$$

The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes n terms having total credits of TC_1 , TC_2 , ..., TC_n and his GPA in these terms are GPA_1 , GPA_2 ,..., GPA_n , respectively then

$$CGPA = \frac{\sum_{i=1}^{n} TCi * GPAi}{\sum_{i=1}^{n} TCi}$$

Numerical Example

Suppose a student has completed eight courses in a term and obtained the following grades:

Course	Credits, Ci	Grade	Grade, G_i	Points, C_iG_i
BME 101	2.0	A-	3.50	7.00
PHY 125	3.0	A+	4.00	12.00

Rules and Regulations for Undergraduate Programs at MIST

PHY 128	1.5	A	3.75	5.625
CHEM 103	3.0	В	3.00	9.00
CHEM 104	1.5	B-	2.75	4.125
MATH 101	3.0	A+	4.00	12.00
LANG 102	1.5	A	3.75	5.625
GES 101	2.0	A+	4.00	8.00
GEBS 101	2.0	A-	3.50	7.00
Total	19.50			70.375

GPA = 70.375/19.50 = 3.60

Suppose a student has completed four terms and obtained the following GPA.

Level	Term	Credit Earned,	Hours GPA Earned,	$GPA_i \times TC_i$
		TC_i	GPA_i	
1	1	19.50	3.73	72.73
1	2	22.50	3.93	88.42
2	1	21.50	3.96	85.14
2	2	20.50	4.00	82.00
1	otal	84.00		328.30

CGPA = 328.30/84.00 = 3.90

2.14.6 Impacts of Grade Earned

- d. The courses in which a student has earned a "D' or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an "F' grade will not be counted towards his/her earned credits or GPA calculation. However, the "F' grade will remain permanently on the Grade Sheet and the Transcript.
- e. A student who obtains an "'F' grade in a core course will have to repeat that particular course. However, if a student gets an "'F' in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an "F', he/she will not be eligible to get a grade better than 'B+"" in that repeated course.
- f. If a student obtains a grade lower than 'B+"" in a particular course he/she will be allowed to repeat the course only once for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than 'B+"" for an improvement course.

- g. A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in B. Arch. program.
- h. If a student obtains a 'B+"" or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

2.15 Classification of Students

At MIST, regular students are classified according to the number of credit hours completed/earned towards a degree. The following classification applies to all the students:

Y 1	Credit Hours Earned		
Level	Engineering	Architecture	
Level 1	0.0 to 36.0	0.0 to 34.0	
Level 2	More than 36.0 to 72.0	More than 34.0 to 72.0	
Level 3	More than 72.0 to 108.0	More than 72.0 to 110.0	
Level 4	More than 108.0	More than 110.0 to 147.0	
Level 5		More than 147.0	

However, before the commencement of each term all students other than new batch are classified into three categories:

- **a.** Category 1: This category consists of students who have passed all the courses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.
- **b.** Category 2: This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.
- **c.** Category 3: This category consists of students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.

2.15.1 Definition of Graduating Student

Graduating students are those students who will have \leq 24 credit hour for completing the degree requirement.

2.16 **Performance Evaluation**

- **a.** The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.
- **b.** Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists:
 - 1) The term GPA falls below 2.20.
 - 2) The Cumulative Grade Point Average (CGPA) falls below 2.20.
 - 3) The earned number of credits falls below 15 times the number of terms attended.
- **c.** All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and backlog courses, if there are any, with better grades. When the minimum GPA and credit requirements are achieved the student is again returned to good standing.

2.17 Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for 'Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

2.17.1 Minimum Earned Credit and GPA Requirement for Obtaining Degree

a. Minimum credit hour requirements for the award of Bachelor's degree in engineering (BSc Engg) and architecture (B Arch) will be decided by the respective department (BUGS). However, the syllabus of all BSc engineering prog must be of minimum 157 credit hours or more and for architecture prog minimum 189 credit hours or more. A student must earnsearn minimum credit hour set in the syllabus by the concerned

- department for qualifying Bachelor's Degree. The minimum CGPA requirement for obtaining a Bachelor's degree in engineering and architecture is 2.20.
- b. A student may take additional courses with the consent of his/her Adviser in order to raise CGPA, but he/she may take a maximum of 15 such additional credits in engineering and 18 such additional credits in architecture beyond respective credit-hour requirements for Bachelor's degree during his/her entire period of study.

2.17.2 Minimum Earned Credit and GPA Requirement for Obtaining Degree

Minimum credit hour requirements for the award of bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided as per existing rules. The minimum GPA requirement for obtaining a Bachelor's degree in Engineering and Architecture is 2.20.

2.18 <u>Time Limits for Completion of Bachelor's Degree</u>

A student must complete his studies within a maximum period of six years for engineering and seven years for architecture.

2.19 Attendance, Conduct and Discipline

MIST has strict rules regarding the issues of attendance in class and discipline.

- a. **Attendance:** All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly and one is required to attend the classes as per MIST rules.
- b. Conduct and Discipline: During their stay in MIST all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance ' 'student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms and drug abuse and addiction are strictly observed in the campus.

2.20 <u>Teacher-Student Interaction</u>

The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for academic matters. Heads of

the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

2.21 Absence During a Term

A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an F grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g. CMH/MIST Medical Officer).

2.22 Recognition of Performance

As recognition of performance and ensure continued studies MIST awards medals, scholarships and stipends will be given as per existing rules and practices.

2.23 <u>Types of Different Examination</u>

Following different types of final Examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:

- **a.** Term Final Examination: At the end of each normal term (after 22week or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.
- **b. Supplementary Examination:** It will take place twice in a year. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun)/Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec)/ Spring Term (Jan-Jun) end break, respectively. Students will be allowed to register for a maximum of two theory courses (Failed/ Improvement) in Supplementary-I and maximum of one theory course (Failed/ Improvement) in Supplementary-II.
- c. Improvement Examination: It will be taken during Supplementary-I and Supplementary-II Examination. Questions will be same as the question of the regular examination of that Supplementary Examination (if any). Student can take maximum two subjects at a time (two subjects in Supplementary-I and one subject in Supplementary-II) and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than 'B+' in a course, he/she will be allowed to repeat the course only once for grade improvement.

However, he/she will not be eligible to get a grade better than 'B+' for an improvement course. Among the previous result and improvement examination result, best one will be considered as final result for an individual student. However, performance of all examination i.e. previous to improvement examination shall be reflected in the transcript.

2.24 Rules of Different Examinations

2.24.1 Term Final Examination

Following rules to be followed:

- **a.** Registration to be completed before commencement of the class. A student has to register his desired courses paying registration, examination fee and other related fees.
- **b.** Late registration will be allowed without penalty within first one week of the term.
- c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.
- **d.** Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.
- e. Term Final Examination to be conducted in the 18-20th week of the term as per approved Academic Calendar.

2.24.2 Supplementary Examination

Following rules to be followed:

- a. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) /Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively.
- b. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.
- c. No class will be conducted.

- d. 40% marks will be considered from the previous exams.
- e. Maximum grading in Supplementary Exam will be 'B+'.
- f. No Sessional Exam will be conducted.
- g. Examination will be taken on 60% marks like Term Final Examination.
- h. If a student fails in a course more than once in regular terms, then for calculating 40% marks, the best one of all continuous assessment marks will be counted.
- i. If anyone fails in the Laboratory/ Sessional course, that course cannot be taken in the supplementary examination.
- j. If any student fails in a course, he can clear the course retaking it second time or, he can clear the examination appearing at the Supplementary Examination as well. Anyone fails twice in a course, can only retake it in the regular term for appearing third time. But anyone fails even after appearing third time, he/she has to take approval of Academic Council of MIST for appearing 4th (last) time in a course and need to pay extra financial penalty. If any student fails even 4th time in a course, will not be allowed to appear anymore in this same course.
- k. Registration of Supplementary-I Exam to be done within 5th week after completion of fall Term (Jul-Dec) and registration of Supplementary-II Exam to be done within the mid-term break of Spring Term (Jan-Jun), paying all the required fees.
- 1. There will be no provision for add/drop courses after registration.
- m. **Thesis:** if a student cannot complete thesis in two consecutive terms, with the recommendation of the supervisor, he/she may continue for next one/two term within six academic years.

2.24.3 Improvement Examination

Following rules to be followed:

- a. Improvement Examination is to be taken during the Supplementary-I and II examinations.
- b. For Improvement Examination, registration is to be done during the registration of Supplementary-I and Supplementary-II Examinations by paying all the fees.
- c. Question Setting, Moderation and Result Publication to be done with courses of Supplementary-I and Supplementary-II Examinations.

- d. Any student gets a grading below 'B+' and desires to improve that course, he will be allowed to appear the Improvement Examination for that particular course.
- e. Highest grade of Improvement Examination will be 'B+'.
- f. One student is allowed to appear at Improvement Exam in 6 (six) courses in his whole graduation period taking maximum two courses at a time (two courses at Supplementary-I and one course at Supplementary-II).

2.25 Irregular Graduation

If any graduating student clears his/her failed course in Term-1 (Spring) and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Term-1 (Spring) and that student will be allowed to apply for provisional certificate.

2.26 Minimum Earned Credit and CGPA Requirement for Obtaining Degree

The requirements for award of engineering degree are as follows:

- a. Completion of the courses for the minimum required credits of 157 (or as specified in a particular department) in a maximum period of six academic years.
- b. Appearing at the final examination in all the required courses as per syllabus of the program.
- c. Scoring a CGPA of 2.2 or above.

2.27 <u>Consequences of Failing in Sessional Courses</u>

Any student failing in any sessional course must re-take that sessional course when offered by the department in any next Regular Term. No Supplementary exam is allowed for sessional course.

2.28 Withdrawal for Poor Performance

A student to remain in reasonable standing must maintain a minimum CGPA of 2.20. Failure to secure/achieve minimum CGPA of 2.20 in two consecutive levels will also lead to withdrawal of the student. A student who fails to maintain a CGPA of 2.20 at the end of a level, but obtains 2.00 or more, will be placed on probation. Failure by a student placed on probation to raise the CGPA to 2.20 in the next level will lead to his withdrawal from the Program. A student failing to maintain a CGPA of 2.20 at the end of the level-4 shall be allowed to repeat courses of the level-4 in which he earned 'C' grades or below. This opportunity will be given only once. Such a student failing to raise CGPA to 2.2 after repeating the courses will be withdrawn from the Program (For further detail 'MIST Withdrawal Policy' may be consulted).

- a. <u>Voluntary withdrawal for Sickness</u>. In case of sickness which leads to missing of more than 40% class or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw from that term subject to the approval of the Academic Council of MIST. Students may retain sessional courses of that term if applies and approved by Academic council. 'VW' as grading of each course to be reflected in concerned tabulation sheet, grade sheet and transcript.
- b. <u>Class Tests.</u> The number of class tests shall be n for 3.0 and above credit courses and (n-1 shall be considered for grading where n is the number of credits of the course. However, for courses having credits below 3.0, the considered class tests shall be 2 out of 3. Class test will be conducted by the subject teacher. Duration of class test should not be more than 30 minutes. Course teacher must announce results within 10 days of holding the examination. Checked script will be shown to the students. If a student misses the class test for acceptable reason the course teacher my take the test of the student.
- c. MIST is committed in conferring degrees to the students in time which plays a very vital role in steering all the academic activities in any university/ institute. At the beginning MIST conducted all its examinations under the examination section of the University of Dhaka. In June 2008, MIST got affiliation with BUP. Since then MIST has been conducting all its examinations under the control and authority of BUP. For the need of time, former MIST examination policy was reviewed several times. Present review committee has made necessary amendment/ addition/ deletion to suit the proposed course system. This policy may be reviewed every after 05 (five) years or as and when felt necessary by the authority of MIST.

2.29 SUMMARY OF MIST EXAMINATION POLICY-2020

Serial	Examination Type	Session	Number of Theory Courses	Maximum Grading	Assessment Percentage	Examination Schedule	Courses	Registration Schedule
1	Regular	Spring Term (Jan- Jun) and Fall Term (Jul- Dec)	Maximum	A+	Assessment	Regular	Pogular	Rogular
2	Retake	Spring Term (Jan- Jun) and Fall Term (Jul- Dec)	- 6 Theory Courses	B+	on 100%	Examination	Regular	Regular
3	Supplementary-I (Fail/Improvement)	Spring Term (Jan- Jun)	Maximum 2 Theory	B+	Assessment on 60%	1 st week of Spring Term (Jan-Jun)/ Fall Term (Jul-Dec) End Break	Courses of immediate past terms included	5th week after completion of Fall Term (Previous Year)
4	Supplementary-II (Fail/Improvement)	Fall Term (Jul- Dec)	Maximum 1 Theory	B+	Assessment on 60%	1 st week of Fall Term (Jul-Dec)/ Spring Term (Jan- Jun) End Break	Courses of immediate past terms not included	Mid-Term Break of Spring (Jan-Jun) Term (March)

- 1. Maximum 24 credit hour in one regular term (excluding Supplementary Exams).
- 2. Students may register maximum upto 7 (seven) theory courses in exceptional case, if department can accommodate within 24 credit hour.
- 3. Students can register maximum 6 (six) theory courses for improvement in his whole academic period.
- 4. Supplementary-I Exam to be considered as part of previous Academic Year.
- 5. Student appearing in Supplementary-I shall not be included in current graduation ceremony.

CHAPTER 3

DEPARTMENT OF BIOMEDICAL ENGINEERING (BME)

3.1 Introduction to the Program

The Department of Biomedical Engineering, MIST, was founded in 2014 and started the academic program of the pioneer batch of Undergraduate Biomedical Engineers in the country. The B.Sc Program commenced on 1st February, 2015 with 41 students. The M.Sc Program commenced on 4th November 2015 with 5 students. Currently, there are a total of 161 students in the B.Sc Program and a total of 37 students in the M.Sc Program. Biomedical Engineering (BME) is an interdisciplinary field that combines the design and problem-solving skills of engineering with medical and biological sciences to advance healthcare treatment. Deeply interdisciplinary, biomedical engineering applies modern approaches from the experimental life sciences in conjunction with theoretical and computational methods from engineering, mathematics, and computer science to the solution of biomedical problems of fundamental importance, such as human health. This field seeks to close the gap between engineering and medicine, combining the design and problem-solving skills of engineering with medical and biological sciences to advance healthcare treatment, including diagnosis, monitoring, and therapy. The current focus of the BME Department includes the development of biocompatible implants and prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment, common biomedical imaging equipment, cell & tissue engineering, regenerative tissue growth, pharmaceutical drugs, and therapeutics.

3.2 <u>Vision and Mission of the Program</u>

Vision:

To become a locally reputed and globally recognized Biomedical Engineering Department through nurturing excellence in teaching, research, and industrial partnership towards advanced cuttingedge healthcare technologies.

Mission:

- **a.** To provide quality education in the emerging and extremely interdisciplinary field of Biomedical Engineering, utilizing up-to-date teaching and learning facilities contributing to advanced healthcare technologies.
- **b.** To formulate and implement a modern academic curriculum to develop professionally sound and ethically strong Biomedical Engineers to provide dedicated services in the healthcare sector of the nation.

- **c.** To facilitate innovative and industry-linked research platforms to foster the development of cutting-edge technologies and their proficient applications.
- **d.** To improve the quality of common peoples' life in Bangladesh using knowledge and skills of modern science and technology.

3.3 Program Educational Objective (PEOs)

No	PEO Statement
PEO-1	Provide graduates mathematical, scientific, and engineering fundamentals and advanced knowledge of understanding in the sector of Biomedical Engineering including analysis techniques, design, developments, and implementation methodologies
PEO-2	Integrate technical and communicative knowledge with professional and industry-based education to build up successful professional careers in industry, government, and academia
PEO-3	Expose graduate's problem-solving skills and research-based education for lifelong learning to adapt the innovation and changes.
PEO-4	Make the graduates capable of working in the broader area of technology, having the capability and responsibility of leadership and teamwork.
PEO-5	Enable the graduates to establish and run sustainable business enterprises along diverse career paths by creating, selecting, applying appropriate and modern technologies and tools.
PEO-6	Contribute the educational, cultural, social, technological and economic development of society through the ethical application of their knowledge and skills.

3.4 **Program Outcomes**

Based on the suggestion of the Board of Accreditation for Engineering and Technical Education (BAETE), Bangladesh, the Bachelor in Biomedical Engineering (BME) program will have the following learning outcomes:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

- 2. Problem analysis: Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using the first principles of mathematics, the natural sciences, and the engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal, and environmental concerns.
- **4. Investigation:** Conduct investigations of complex problems, considering the design of experiments, analysis, and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate sustainable development knowledge.
- **8.** Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and the norms of the engineering practice.
- **9. Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
- 10. Communication: Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of a team to manage projects in multi-disciplinary environments.
- **12. Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

In addition to incorporating the above-listed POs, MIST also included the following Knowledge Profile (K1-K8) as an educational institution: may include additional outcomes in its learning programs. The ranges of Complex Problem Solving (P1-P7) and Complex Engineering Activities (A1-A5) that should be addressed in the program are summarized in the tables below.

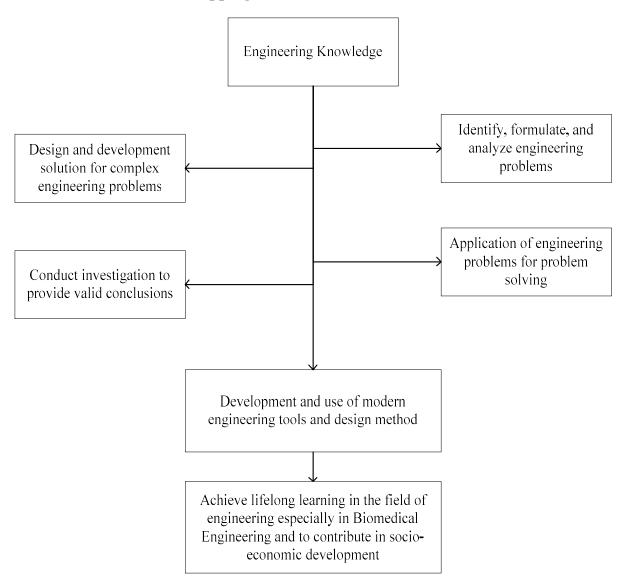
Knowledge Profile (KP)

	Attribute
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
K2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline
К3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
K7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability
K8	Engagement with selected knowledge in the research literature of the discipline

Range of Complex Engineering Problem Solving

Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7:
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach

Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	P4: Involve infrequently encountered issues
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder involvement and conflicting requirements	P6: Involve diverse groups of stakeholders with widely varying needs
Interdependence	P7: Are high level problems including many component parts or sub-problems


Range of Complex Engineering Activities

Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:			
Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)			
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues			
Innovation	A3: Involve creative use of engineering principles and research based knowledge in novel ways			
Consequences for society and the environment	A4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation			
Familiarity	A5: Can extend beyond previous experiences by applying principles-based approaches			

3.5 Generic Skills

- 1. Apply the principles and theory of biomedical engineering knowledge to the requirements, design and development of different biomedical equipment and devices with appropriate understanding.
- **2.** Define and use appropriate research methods and modern tools to conduct a specific project.
- 3. Learn independently, be self- aware, and self- manage their time and workload.
- 4. Apply critical thinking to solve complex engineering problems
- 5. Analyze real time problems and justify the appropriate use of technology
- **6.** Work effectively with others and exhibit social responsibility

3.6 Curriculum/ Skill Mapping

CHAPTER 4

COURSE CURRICULUM FOR BACHELOR DEGREE IN BME

4.1 <u>Course Schedule</u>

Keeping the above mentioned program outcome, the course schedule for the undergraduate students of the Biomedical Engineering (BME) is given below:

	Basic Science			Gen	eral	Engineering Courses				Elective	
Level/ Term			Math		Education		Dept.		Dept.	Course	Total
	Т	S	Т	Т	S	Т	S	Т	s	Т	
L-1 (Spring)	6.00	1.50	3.00	2.00	-	2.00	-	3.00	1.50	-	19.00
L-1 (Fall)	6.00	1.50	3.00	2.00	1.50	3.00	1.50	-	-	-	18.50
L-2 (Spring)	-	-	3.00	2.00	1.50	3.00	-	6.00	3.00	-	18.50
L-2 (Fall)	-	-	3.00	-	-	9.00	4.50	3.00	-	-	19.50
L-3 (Spring)	-	-	-	-	-	12.00	4.50	3.00	1.50	-	21.00
L-3 (Fall)	-	-	-	-	2.00	12.00	7.50	-	-	-	21.50
L-4 (Spring)	-	-	-	4.00	-	6.00	6.00	-	-	6.00	22.00
L-4 (Fall)	-	-	-	2.00	-	9.00	3.00	-	-	6.00	20.00
% of											
Total	9.3	75	7.50	10.	625	51.	875	13.	125	7.50	100.00
Course											
Total											
Credit	15.	00	12.00	17	.00	83.	.00	21	.00	12.00	160.00
Hr											

T=Theory; S=Sessional

Table: Summary of Course Curriculum

4.2 Contact Hours and Credit Hours Distribution in Eight Terms

Level/Term	Theory Contact Hours	Sessional Contact Hours	Theory Credit Hours	Sessional Credit Hours	Total Contact Hours	Total Credit Hours
L-1 (Spring)	16.00	6.00	16.00	3.00	22.00	19.00
L-1 (Fall)	14.00	9.00	14.00	4.50	23.00	18.50
L-2 (Spring)	14.00	9.00	14.00	4.50	23.00	18.50
L-2 (Fall)	15.00	9.00	15.00	4.50	24.00	19.50
L-3 (Spring)	15.00	12.00	15.00	6.00	27.00	21.00
L-3 (Fall)	12.00	16.00+4 Weeks	12.00	9.50	28.00+4 Weeks	21.50
L-4 (Spring)	16.00	12.00	16.00	6.00	28.00	22.00
L-4 (Fall)	17.00	6.00	17.00	3.00	23.00	20.00
Total	119.00	79.00+4 Weeks	119.00	41.00	198.00+4 Weeks	160.00

4.3 Final Year

Final Year Design and Research Project

Final year design and research project will have to be undertaken by students under separate supervisors in partial fulfillment of the requirement of his/her degree. Credits allotted to the final year design and research project will be 6.00 corresponding to 12.00 contact hours. Topic and advisor selection of final year design and research project must be finalized within level-3, term-2.

4.4 BME Courses

The students have to complete all the core courses listed below:

4.4.1 List of Core Courses – BME

Ser	Course Code	Course Name			
1	BME 101	Introduction to Biomedical Engineering	2.0		
2	BME 104	CAD in Biomedical Engineering Sessional	1.5		
3	BME 105	Human Anatomy	3.0		
4	BME 201	Human Physiology	3.0		
5	BME 203	Biochemistry	3.0		
6	BME 204	Biochemistry Sessional	1.5		
7	BME 205	Biofluid Mechanics and Heat Transfer	3.0		
8	BME 206	Biofluid Mechanics and Heat Transfer Sessional	1.5		
9	BME 207	Biomedical Instrumentation and Measurements	3.0		
10	BME 208	Biomedical Instrumentation and Measurements Sessional	1.5		
11	BME 301	Statistics and Numerical Methods for Biomedical Engineers	3.0		
12	BME 302	Statistics and Numerical Methods for Biomedical Engineers Sessional	1.5		
13	BME 303	Biomechanics	3.0		
14	BME 304	Biomechanics Sessional	1.5		
15	BME 305	Biomedical Signal Processing	3.0		
16	BME 306	Biomedical Signal Processing Sessional	1.5		
17	BME 307	Medical Imaging	3.0		
18	BME 309	Biomedical Transport Phenomenon	3.0		
19	BME 311	Embedded Systems and Interfacing	1.5		
20	BME 312	Embedded Systems and Interfacing Sessional	3.0		
21	BME 313	Biomedical Image Processing	1.5		
22	BME 314	Biomedical Image Processing Sessional	3.0		

23	BME 315	Biomaterials	3.0
24	BME 316	Biomaterials Sessional	1.5
25	BME 318	Biomedical Engineering Design Sessional I	1.5
26	BME 300	Industrial Training	1.5
27	BME 401	Diagnostic and Therapeutic Equipment	3.0
28	BME 403	Molecular Biology for Engineers	3.0
29	BME 404	Molecular Biology for Engineers Sessional	1.5
30	BME 405	Healthcare Technology Management	3.0
31	BME 407	Rehabilitation Engineering	3.0
32	BME 409	Tissue Engineering	3.0
33	BME 412	Biomedical Engineering Design Sessional II	1.5
33	BME 400	Final Year Design and Research Project	6.0
Total			83.0

4.4.2 List of Courses – Basic Science and Mathematics

Ser	Course Code	Course Name	Credit Hour
1	PHY 125	Waves and Oscillations, Optics and Modern physics	3.0
2	PHY 127	Structure of matter, Electricity, Magnetism, and Mechanics	3.0
3	PHY 128	Physics Sessional	1.5
4	CHEM 103	General Chemistry	3.0
5	CHEM 104	Chemistry Sessional	1.5
6	CHEM 125	Physical and Bio-organic Chemistry	3.0
7	MATH 101	Differential and Integral Calculus	3.0
8	MATH 105	Vector Analysis, Matrix and Coordinate Geometry	3.0
9	MATH 205	Differential Equation, Laplace transform and Fourier Transform	3.0
10	MATH 231	Complex Variables and Linear Algebra	3.0
Tota	ıl		27.0

4.4.3 List of Courses – General Education or Non-Skill and Language/ Communicative Language

Ser	Course Code	Course Name	Credit Hour	
1	LANG 102	Communicative English I	1.5	
2	GES 101	Fundamentals of Sociology	2.0	
3	GEBS 101	Bangladesh Studies	2.0	
4	GELM 271	Leadership and Management	2.0	
5	LANG	Communicative English II/Bangla Language and	1.5	
	202/LANG 204	Literature	1.3	
6	GERM 352	Fundamentals of Research Methodology	2.0	
U	GERAVI 552	(Sessional)	2.0	
7	GEPM 481	Project Management and Finance	2.0	
8	GESL 421	Environment, Sustainability and Law	2.0	
9	GEEM 451	Engineering Ethics and Moral Philosophy	2.0	
Total			17.0	

4.4.4 List of Core Courses – Interdisciplinary

Ser	Course Code	Course Name	Credit Hour
1	EECE 191	Principles of Electrical Engineering	3.0
2	EECE 192	Principles of Electrical Engineering Sessional	1.5
3	EECE 291	Electronic Circuits and Devices	3.0
4	EECE 292	Electronic Circuits and Devices Sessional	1.5
5	EECE 391	Digital Electronics	3.0
6	EECE 392	Digital Electronics Sessional	1.5
7	ME 291	Principles of Mechanical Engineering	3.0
8	CSE 291	Computer Programming	3.0
9	CSE 292	Computer Programming Sessional	1.5
Total			21.0

4.4.5 BME Elective Courses

At least TWO elective courses must be taken from each group.

4.4.5.1 Group-I (Instrumentation)

Ser	Course Code	Course Name	Credit Hour
1.	BME 411	Physiological Control System	3.0
2.	BME 413	Virtual Bioinstrumentation	3.0
3.	BME 415	Biophotonics	3.0
4.	BME 417	Equipment in Radiology and Radiotherapy	3.0

4.4.5.2 Group-II (Regenerative Medicine)

Ser	Course Code	Course Name	Credit
			Hour
1.	BME 419	Drug Development and Delivery System	3.0
2.	BME 421	Nanotechnology in Biomedicine	3.0
3.	BME 423	Artificial Organ Development	3.0
4.	BME 425	Bioinformatics	3.0

4.4.5.3 Group-III (Imaging)

Ser	Course Code	Course Name	Credit
			Hour
1.	BME 427	Advanced Biomedical Signal Processing	3.0
2.	BME 429	Nuclear Medicine	3.0
3.	BME 431	Biomedical Data Science	3.0

4.4.5.4 Group-IV (Biomechanics and Rehabilitation Engineering)

Ser	Course Code	Course Name	Credit
			Hour
1.	BME 433	Advanced Biofluid Mechanics	3.0
2.	BME 435	Biomedical Implants and Braces	3.0
3.	BME 437	Neuroscience and Neural Engineering	3.0
4.	BME 439	Biofabrication	3.0

4.5 <u>Term-wise Distribution of Courses</u>

4.5.1 LEVEL 1, SPRING

Ser	Course Code	Course Name	Contact	Credit
			Hour	Hour
1.	BME 101	Introduction to Biomedical Engineering	2.0	2.0
2.	PHY 125	Waves and Oscillations, Optics and Modern	3.0	3.0
۷.	1111 123	physics	3.0	3.0
3.	GES 101	Fundamentals of Sociology	2.0	2.0
4.	CHEM 103	General Chemistry	3.0	3.0
5.	CHEM 104	Chemistry Sessional	3.0	1.5
6.	MATH 101	Differential and Integral Calculus	3.0	3.0
7.	EECE 191	Principles of Electrical Engineering	3.0	3.0
8.	EECE 192	Principles of Electrical Engineering	3.0	1.5
0.	EECL 172	Sessional	5.0	1.5
	Total			19.0

4.5.2 LEVEL 1, FALL

Ser	Course Code	Course Name	Contact	Credit
			Hour	Hour
1.	BME 104	CAD in Biomedical Engineering Sessional	3.0	1.5
2.	BME 105	Human Anatomy	3.0	3.0
3.	PHY 127	Structure of matter, Electricity and Magnetism, and Mechanics	3.0	3.0
4.	CHEM 125	Physical and Bio-organic Chemistry	3.0	3.0
5.	MATH 105	Vector Analysis, Matrix and Coordinate Geometry	3.0	3.0
6.	PHY 128	Physics Sessional	3.0	1.5
7.	GEBS 101	Bangladesh Studies	2.0	2.0
8.	LANG 102	Communicative English I	3.0	1.5
	Total			18.5

4.5.3 LEVEL 2, SPRING

Ser	Course Code	Course Name	Contact Hour	Credit Hour
1.	BME 201	Human Physiology	3.0	3.0
2.	MATH 205	Differential Equation, Laplace transform and Fourier Transform	3.0	3.0
3.	EECE 291	Electronic Circuits and Devices	3.0	3.0
4.	EECE 292	Electronic Circuits and Devices Sessional	3.0	1.5
5.	CSE 291	Computer Programming	3.0	3.0
6.	CSE 292	Computer Programming Sessional	3.0	1.5
7.	GELM 271	Leadership and Management	2.0	2.0
8.	LANG	Communicative English II/Bangla	3.0	1.5
	202/LANG 204	Language and Literature		
	Total			18.5

4.5.4 LEVEL 2, FALL

Ser	Course Code	Course Name	Contact Hour	Credit Hour
1.	BME 203	Biochemistry	3.0	3.0
2.	BME 204	Biochemistry Sessional	3.0	1.5
3.	BME 205	Biofluid Mechanics and Heat Transfer	3.0	3.0
4.	BME 206	Biofluid Mechanics and Heat Transfer	3.0	1.5
		Sessional		
5.	BME 207	Biomedical Instrumentation and	3.0	3.0
		Measurements		
6.	BME 208	Biomedical Instrumentation and	3.0	1.5
		Measurements Sessional		
7.	ME 291	Principles of Mechanical Engineering	3.0	3.0
8.	MATH 231	Complex Variables and Linear Algebra	3.0	3.0
	Total			19.5

4.5.5 LEVEL 3, SPRING

Ser	Course Code	Course Name	Contact Hour	Credit Hour
1.	BME 301	Statistics and Numerical Methods for	3.0	3.0
		Biomedical Engineers		
2.	BME 302	Statistics and Numerical Methods for	3.0	1.5
		Biomedical Engineers Sessional		
3.	BME 303	Biomechanics	3.0	3.0
4.	BME 304	Biomechanics Sessional	3.0	1.5
5.	BME 305	Biomedical Signal Processing	3.0	3.0
6.	BME 306	Biomedical Signal Processing Sessional	3.0	1.5
7.	BME 307	Medical Imaging	3.0	3.0
8.	EECE 391	Digital Electronics	3.0	3.0
9.	EECE 392	Digital Electronics Sessional	3.0	1.5
	•	27.0	21.0	

4.5.6 LEVEL 3, FALL

Ser	Course Code	Course Code Course Name	Contact	Credit
	Course coue	Course I tunic	Hour	Hour
1.	BME 309	Biomedical Transport Phenomenon	3.0	3.0
2.	BME 311	Embedded Systems and Interfacing	3.0	3.0
3.	BME 312	Embedded Systems and Interfacing	3.0	1.5
		Sessional		
4.	BME 313	Biomedical Image Processing	3.0	3.0
5.	BME 314	Biomedical Image Processing Sessional	3.0	1.5
6.	BME 315	Biomaterials	3.0	3.0
7.	BME 316	Biomaterials Sessional	3.0	1.5
8.	BME 318	Biomedical Engineering Design Sessional I	3.0	1.5
9.	GERM 352	Fundamentals of Research Methodology (Sessional)	4.0	2.0
10.	BME 300	Industrial Training	4 weeks	1.5
	1	28.0	21.5	

4.5.7 LEVEL 4, SPRING

Ser	Course Code	Course Name	Contact Hour	Credit Hour
1.	BME 401	Diagnostic and Therapeutic Equipment	3.0	3.0
2.	BME 403	Molecular Biology for Engineers	3.0	3.0
3.	BME 404	Molecular Biology for Engineers Sessional	3.0	1.5
4.	BME 4**	Elective 1	3.0	3.0
5.	BME 4**	Elective 2	3.0	3.0
6.	GESL 421	Environment, Sustainability and Law	2.0	2.0
7.	GEPM 481	Project Management and Finance	2.0	2.0
8.	BME 412	Biomedical Engineering Design Sessional II	3.0	1.5
9.	BME 400	Final Year Design and Research Project	6.0	3.0
Total			28.0	22.0

4.5.8 LEVEL 4, FALL

Ser	er Course Code Course Name		Contact	Credit
Sei			Hour	Hour
1.	BME 405	Healthcare Technology Management	3.0	3.0
2.	BME 407	Rehabilitation Engineering	3.0	3.0
3.	BME 409	Tissue Engineering	3.0	3.0
4.	BME 4**	Elective 3	3.0	3.0
5.	BME 4**	Elective 4	3.0	3.0
7.	GEEM 451	Engineering Ethics and Moral Philosophy	2.0	2.0
8.	8. BME 400 Final Year Design and Research Project			3.0
		23.0	20.0	

4.5.9 List of Elective Courses

At least TWO elective courses must be taken from each group.

Group-I (Instrumentation)

Ser	Course Code	Course Name	Credit Hour
1.	BME 411	Physiological Control System	3.0
2.	BME 413	Virtual Bioinstrumentation	3.0
3.	BME 415	Biophotonics	3.0
4.	BME 417	Equipment in Radiology and Radiotherapy	3.0

Group-II (Regenerative Medicine)

Ser	Course Code	Course Name	Credit
			Hour
1.	BME 419	Drug Development and Delivery System	3.0
2.	BME 421	Nanotechnology in Biomedicine	3.0
3.	BME 423	Artificial Organ Development	3.0
4.	BME 425	Bioinformatics	3.0

Group-III (Imaging)

Ser	Course Code	Course Name	Credit
			Hour
1.	BME 427	Advanced Biomedical Signal Processing	3.0
2.	BME 429	Nuclear Medicine	3.0
3.	BME 431	Biomedical Data Science	3.0

Group-IV (Biomechanics and Rehabilitation Engineering)

Ser	Course Code	Course Name	Credit
			Hour
1.	BME 433	Advanced Biofluid Mechanics	3.0
2.	BME 435	Biomedical Implants and Braces	3.0
3.	BME 437	Neuroscience and Neural Engineering	3.0
4.	BME 439	Biofabrication	3.0

CHAPTER 5

COURSES OFFERED BY OTHER DEPARTMENTS

5.1 **Department of Science and Humanities**

5.1.1 Level-1, Spring

5.1.1.1 PHY 125 Waves and Oscillations, Optics and Modern Physics

COURSE INFO	RMATION		
Course Code Course Title	: PHY 125 :Waves and Oscillations, Optics and Modern Physics	Lecture Contact Hours Credit Hours	: 3.00 : 3.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome-Based Education (OBE)

SYNOPSIS/RATIONALE

This course is the basic physics in the field of waves and oscillations, optics and modern physics. The course will be emphasized the basic concepts, theories and solve quantitative problems which can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVE

- 1. To define the different parameters, concepts, logical and critical thinking with scientific knowledge of waves and oscillations, optics and modern physics.
- 2. To explain the basic theories and laws of waves and oscillations, optics and modern physics.
- 3. To solve numerical and analytical problems regarding waves and oscillations, optics and modern physics.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome At the end of the course, a student should be able to	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to define different basic laws and parameters in the field of waves and oscillations, optics and modern physics such as simple harmonic motion, damped oscillations, interference, diffraction, polarization, relativity, photoelectric effect, Compton effect, radioactivity, etc.	Cl	1	-	-	1	T, MT,
CO2	Be able to explain different basic theories in the field of waves and oscillations, optics and modern physics such as the SHM, damped motion, wave motion, interference, diffraction, polarization, special theory of relativity, Compton theory, nuclear transformation, nuclear reaction etc.	C2	1	-	-	1	T, MT, F
CO3	Be able to solve quantitative problems in the field of waves and oscillations, optics and modern physics such as SHM, damped motion, wave motion, interference, diffraction, polarization, relativity, photoelectric effect, Compton shift, radioactivity, etc.	C3, C4	1	-	-	2	T, F, MT, ASG

(CP - Complex Problems, CA - Complex Activities, KP - Knowledge Profile, T - Test, PR - Project, Q - Quiz, ASG							
– Assignment, Pr – Presentation, R – Report, CS – Case study, MT- Mid Term Exam, F – Final Exam)							
C1 - Remember					C6 – Create		

COURSE CONTENT

Waves and Oscillations: Simple Harmonic Motion (SHM) and its properties, differential equation of a SHM and its solution, total energy and average energy of a body executing SHM, simple pendulum, torsional pendulum, spring-mass system, LC oscillatory circuit, two body oscillation and reduced mass, Composition of SHM, Damped oscillations, and its different condition, forced oscillations and its different condition, resonance, Wave motion: expression for a plane progressive wave, differential equation of wave motion, energy density of wave motion, average kinetic and potential energy of wave motion, Stationary wave.

Optics: Combination of lens, equivalent lens and power, Defects of images and different aberrations, Interference of light, Young's double slit experiment, interference in thin films, Newton's ring, Diffraction of light, Fraunhofer and Fresnel diffraction, diffraction by single slit and double slit, diffraction grating, Fraunhofer diffraction at a circular aperture, resolving power of optical instrument, Polarization of light, Brewster's law, Malus law, polarization by double refraction, Nicole prism, optical activity and polarimeters, Laser: spontaneous and stimulated emission.

Modern physics: Relativity: Frame of reference, postulates of special theory of relativity, Galilean transformation, Lorentz transformation, length contraction, time dilation, velocity addition, relativity of mass, mass energy relation, momentum energy relation, Photoelectric effect, Compton effect, de Broglie matter wave, Bohr atom model and explanation, atomic orbital and energy equation, classification of nuclei, nuclear mass and binding energy, Radioactivity, radioactive decay law, half-life, mean life, nuclear reaction, introduction to nuclear reactor

SKILL MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to define different basic parameters in the field of Waves and Oscillations, Optics and Modern physics such as periodic motion, simple harmonic motion, undamped oscillations, interference, diffraction, polarization and prism, photoelectric effect, Compton effect, matter wave, atomic model, radioactive decay, fusion, fission etc.	V											
CO2	Be capable to explain different basic theories in the field of Waves and Oscillations, Optics and Modern physics such as the wave motion for different systems along with energy, different formula for interference, diffraction, polarization special theory of relativity, Compton theory, nuclear transformation, and nuclear reaction etc.	√											
CO3	Be skilled to solve quantitative problems in the field of Waves and Oscillations, Optics and Modern physics such as energy of wave motion, wavelength, diffraction pattern, relativistic energy, photon energy, Compton shift, nuclear binding energy etc.	\checkmark											

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of	Justification
	Matching	
CO1-PO1	3	The conceptual knowledge of the natural sciences applicable to the engineering discipline
CO2-PO1	3	The theory-based knowledge of the natural sciences applicable to the engineering discipline
CO3-PO1	3	The numerical analysis based knowledge of the natural sciences applicable to the engineering

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	132

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Content	Assessment
Week-1	Topic	
Class-1	Introductory class: Brief discussion on total syllabus, basic	
Class-1	requirements of the course, assessment of the course	
	Periodic motion, oscillatory motion, simple harmonic motion	
Class-2	(SHM), properties of SHM, differential equations, general	CT – 1 and Midterm,
	solution of SHM, graphical representation of SHM	Final
Class-3	Velocity, acceleration, phase and epoch, time period, frequency	
Class-3	and angular frequency of SHM	
Week-2		
Class-4	Total energy and average energy of SHM, problems	
Class-5	Simple pendulum, torsional pendulum, spring-mass system	
Class-6	LC oscillatory circuit, two body oscillations, reduced mass	
Week-3		
Class-7	Composition of SHM	
Class-8	Composition of SHM, problems	
Class-9	Damped oscillations and its differential equation	
Week-4		
Class-10	Displacement equation of damped oscillations and its different	
	conditions, electric damped oscillatory circuit	
Class-11	Forced oscillations and its differential equation, displacement	
	equation of forced oscillations, resonance	

Class 12	Wassa matical a supposition for a plane magnetic ways	ine. Departments
Class-12	Wave motion: expression for a plane progressive wave,	
	differential equation of wave motion, particle velocity, wave	
Week 5	velocity	Mid4 E:1
Week-5		Midterm, Final
Class-13	Energy density of a plane progressive wave, average energy in a	
C1 14	plane progressive wave, problems	
Class-14	Stationary wave : node, anti-node, problems	
Class-15	Lens and combination of lenses, equivalent lens, power of lens, cardinal points	
Week-6		
Class-16	Defects of images and different aberrations	
Class-17	Defects of images and different aberrations	
Class-18	Interference of light, young's double slit experiment	
Week-7		
Class-19	Analytical treatment of interference, energy distribution	
Class-20	Interference fringes, interference in thin films	
Class-21	Newton's ring, Interferometer	
	MIDTERM	
Week-8		
Class-22	Diffraction : Fresnel & Fraunhofer diffraction, diffraction by	
	single slit	
Class-23	Diffraction by double slit, diffraction gratings	
Class-24	Fraunhofer diffraction at a circular aperture, resolving power of	
	optical instrument	
Week-9	^	CT – 2, FINAL
Class-25	Polarization of light, Brewster's law, Malus' law	
Class-26	Polarization by double refraction, Nicol prism: Polarizer and	
	analyzer	
Class-27	Optical activity: specific rotation, polarimeters	
Week-10		
Class-28	Laser: spontaneous and stimulated emission, applications of laser	
Class-29	Theory of relativity: Frame of reference, postulates of special	
	relativity, Galilean relativity, Galilean transformation	
Class-30	Lorentz transformations, length contraction, time dilation	
Week-11		
Class-31	Velocity addition, relativistic mass and its expression,	
Class-32	Mass and energy equivalence equation and concept of massless	
	particles and its expression, momentum energy relation,	
	problems	
Class-33	Photoelectric effect, photocurrent and work function, kinetic	
	energy, stopping potential	
Week-12		CT – 3, FINAL
Class-34	Photoelectric equation, characteristics of photoelectric effect	
Class-35	Compton effect: definition, Compton wavelength shift, limitation	
Class-36	De Broglie concept, condition for wave and particle behavior,	
	Bohr atomic model	
Week-13		
Class-37	Expression for Bohr radii and orbital energy for hydrogen atom	
Class-38	Classification of nuclei, nuclear mass and nuclear binding energy	FINAL
Class-39	Radioactivity: Radioactive decay law, half- life	

Week-14	
Class-40	Mean life, nuclear reaction: concept of Fusion, Fission and
	nuclear chain reaction
Class-41	General idea on nuclear reactor and nuclear power plant
Class-42	Review of the syllabus

ASSESSMENT STRATEGY

				Blooms Taxonomy
Comp	onents	Grading	CO	Blooms Taxonomy
Class Test/ Assignment		20%	CO1, CO2	C1, C2
Continuous Assessment	Class Participation	5%		
(40%)	Class Attendance	5%		
	Midterm	10%	CO2, CO3	C2, C3
	·		CO 1	C1
Final Exam 60% Total Marks 100%		60%	CO 2	C1, C2
		CO 3	C2	

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Fundamentals of Physics: Halliday, Resnick and Walker
- 2. Physics for Scientists and Engineers: Serway and Jewett

REFERENCE BOOKS

- 1. Physics for Engineers: Part-I and Part-II: Dr Giasuddin Ahmad
- 2. Physics, Volume I and Volume II: Resnick and Halliday
- 3. Fundamentals of Physics: Halliday, Resnick and Walker
- 4. Physics for Scientists and Engineers: Serway and Jewett
- 5. Waves and Oscillations: Brij Lal and Subramannyam
- 6. The Physics of Vibrations and Waves: H. J. Pain
- 7. Concept of Modern Physics: Arthur Beiser
- 8. University Physics with Modern Physics: Hugh D. Young and Roger A. Freedman
- 9. Modern Physics for Science and Engineering: Marshall L. Burns
- 10. Modern Physics : B.L. Theraja
- 11. Fundamental of Optics: Francis A. Jenkins and Harvey E. White
- 12. Introduction to Modern Optics: Grant R. Fowles
- 13. Fundamental Optical Design: Michael J. Kidger
- 14. A Text Book of Optics: Brijlal and N. Subrahmanyam Fundamental Optical Design: Michael J. Kidger

REFERENCE SITE

-

5.1.1.2 MATH 101 Differential and Integral Calculus

COURSE INFO	RMATION		
Course Code	: Math 101	Lecture Contact Hours	: 3.00
Course Title	: Differential and Integral Calculus	Credit Hours	: 3.00
PRE-REQUISIT	E		
None			
CURRICULUM STRUCTURE			

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to introduce basic knowledge of Differential Calculus and use it in engineering study.

OBJECTIVE

- 1. Be able to impart basic knowledge on differential and Integral Calculus to solve engineering problems and other applied problems.
- 2. Developing understanding some of the important aspects of rate of change, area, tangent, normal and volume.
- 3. Be expert in imparting in depth knowledge of functional analysis such as increasing, decreasing, maximum and minimum values of a function

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals.	C1-C2	1	1		3	T, F, ASG
CO2	Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.	C3	1	1		3	T, Midterm Exam, F
СОЗ	Calculate the length, area, volume, center of gravity and average value related to engineering study	С3	1	1		3	Midterm Exam, F, ASG

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Differential Calculus: Introduction, Differential Calculus for Engineering, Function and Limit, Continuity and Differentiability, Cartesian differentiation, Successive Differentiation, Leibnittz's Theorem, Rolle's Theorem, Mean Value Theorem, Taylor's theorem, Expansion of Finite and Infinite forms, Indeterminate form, Partial differentiation. Euler's theorem, Tangent, sub tangent and Normal, sub normal, Maxima and Minima, Curvature, Asymptotes,

Integral Calculus: Definition of Integration, Importance of Integration in Eng., Integration by substitution, Integration by parts, Standard integrals, Integration by successive reduction, Definite integrals and its properties, Integration as a limit of sum, summing series, Walli's formula, Improper Integrals, beta and gamma function, multiple integral and its application, Area, volume of solid revolution, Area under a plain curve, Area of the region enclosed by two curves, Are lengths of curves.

SKILL MAPPING

N	0 0 4			I	PROC	GRAN	ИΟ	UT	CO	ME	S (PC	D)	
No.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO 1	Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals	3											
CO 2 Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.		3											
CO 3	Calculate the length, area, volume, center of gravity and average value related to engineering study	3											

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Justification for CO-PO mapping:

Mapping	Corresponding I of matching	Level	Justifications
CO1-PO1(a)	3		The knowledge of mathematics, science and engineering has to be applied to
			describe the complete concept of differential and integral calculus.
CO2-PO1(a)	3		To apply proper and improper integral in the field of engineering study, the
			knowledge of mathematics, science and engineering is required.
CO3-PO1(a)	3		In order to calculate volume, average, center of gravity and area of any solid
			revolution object, the knowledge of mathematics and engineering is needed.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week 1		
Class 1	Introduction to Differential Calculus for Engineering study, Limit of a function and its	
	properties.	
Class 2	Basic limit theorems with proofs, Limit of infinity and infinite limit, Sandwich	
	(Squeezing) theorem with problems.	
Class 3	Concept of Differentiation, definition, classification of discontinuity and solving	CT 1
	problems	
Week 2		
Class 4	Basic concept of Differentiability, definition, derivative of a function, differentiable	
	function.	
Class 5	Differentiability – one sided derivatives (R.H.D and L.H.D), solving problems	
Class 6	Successive differentiation – Concept and problem solving	
Week 3		
Class 7	Leibnitz's theorem and its applications	
Class 8	Determination of $(y_n)_0$	
Class C	U	
Class 9	Mean Value theorem, Taylor theorem	
Week 4 Class 10	Expansion of finite and infinite forms, Lagrange's and Cauchy's form of remainder.	CT 2
Class 10	1	C12
	Indeterminate forms – concept and problem solving,	
Class 12	L'Hospital's rul s with application	
XV1- 5	s with application	
Week 5 Class 13	Double 1 different data and another the formation of two varieties and mobiles	
	Partial differentiation - partial derivatives of a function of two variables and problems	
Class 14	Partial differentiation - partial derivatives of a homogeneous function of two variables, Euler's theorem for two variables and problems	
Class 15	Partial differentiation - partial derivatives of a homogeneous function of several	
Class 13	variables, Euler's theorem for several (three and m) variables and problem solving	
	variables, Euler's theorem for several (three and in) variables and problem solving	
Week 6		
Class 16	Tangents and Normals – Tangents and Normals in Cartesian, equation of tangent at the	
Class 10	origin, equation of normal of functions of explicit and implicit forms, Angle between two	
	intersection of two curves; problem solving	
Class 17	Tangents and Normals – Tangents and Normals in polar, Angle between two intersection	
* /	of two curves; problem solving	
Class 18	Tangents and Normals – Subtangent and subnormals in Cartesian and polar coordinate;	
	problem solving	
Week 7		
Class 19	Maxima and minima of functions of single variables – concept, Increasing and	
	decreasing function, Concave up and down with problems	
Class 20	Curvature	
Class 21	Asymptotes	Mid
Week 8		Term
Class 22	Introduction to integral calculus	
Class 23	Standard integrals – concept of definite and indefinite integrals, applications.	
Class 24	Indefinite integrals – Method of substitution, Techniques of integration	
Week 9	-	

Class 25	Indefinite integrals – Integration by parts, Special types of integration, integration by	
	partial fraction	
Class 26	Integration by the method of successive reduction	
Class 27	Definite integrals – definite integrals with properties and problems	
Week 10		
Class 28	Definite integrals – Reduction formula, Walli's formula	
Class 29	Definite integrals – definite integral as the limit of the sum	
Class 30	Beta function – concept and problem solving	
Week 11		CT 4
Class 31	Gamma function - concept and problem solving	
Class 32	Relation between beta and gamma function, Legendre duplication formula, problems and applications	
Class 33	Multiple integrals – double integrals	
Week 12		
Class 34	Multiple integrals – triple integrals	
Class 35	Multiple integrals – successive integration for two and three variables	
Class 36	Area in Cartesian	
Week 13		
Class 37	Area in polar	
Class 38	Volume of solid revolution	
Class 39	Area under a plain curve in Cartesian and polar coordinates	
Week 14		
Class 40	Area of a region enclosed by two curves in Cartesian and polar coordinates	
Class 41	Arc lengths of curves in Cartesian coordinates	
Class 42	Arc lengths of curves in polar coordinates	

ASSESSMENT STRATEGY

Compo	СО	Blooms Taxonomy		
	Class Test/ Assignment 1-3	20%	CO1, CO2	C1, C2
	Class rest rissignment i 5	2070	CO 2	C3
Continuous Assessment (40%)	Class Participation	5%	CO 3	C3
	Midterm	15%	CO 2, CO3	C3
			CO 1	CO 1
Final E	60%	CO 2	CO 2	
			CO 3	CO 3
Total Marks				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

1. Calculus (9th Edition) by Howard Anton (Author), Irl C. Bivens (Author), Stephen Davis.

REFERENCE BOOKS

1. Calculus: An Intuitive and Physical Approach By Morris Kline.
REFERENCE SITES

5.1.1.3 CHEM 103 General Chemistry

COURSE INFORMATION							
Course Code	: CHEM 103	Lecture Contact Hours	: 3.00				
Course Title	: General Chemistry	Credit Hours	: 3.00				
PRE-REQUISITE							

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To learn the basic concepts of inorganic chemistry, physical chemistry and spectroscopic techniques

OBJECTIVE

- 1. To define the different parameter and concepts of inorganic chemistry.
- 2. To apply different chemical theory to evaluate structure of molecules.
- 3. To explain the basic concepts of physical chemistry.
- 4. To describe basic principles of spectroscopic techniques.

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to define/identify the different parameters and fundamental concepts regarding inorganic and physical chemistry, spectroscopic techniques.	1	C1			1	T, F, Mid Term
CO2	Be able to apply different theories on chemical bonding and hybridization to determine structure of molecules.	1	C3			1,2	T, F, Mid Term, ASG
CO3	Be able to explain/illustrate /derive different theories based on colligative properties, chemical equilibrium, chemical kinetics, thermochemistry and electrochemistry, spectroscopic techniques	1	C2			1,2	T, F, Mid Term, ASG
CO4	Solve/Analyze different problems related to inorganic and physical chemistry	2	C4			1,2	ASG ,Mid Term Exam, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Atomic Structure: Concepts of atomic structure, Different atom models, Quantum theory and electronic configurations, Heisenberg's uncertainty principle

Periodic Table: Periodic classification of elements, Periodic properties of elements, Properties and uses of noble gases **Chemical Bonding:** Types and properties, Lewis theory, VBT, MOT, Hybridization and shapes of molecules

Introduction to spectroscopic techniques: interaction of electromagnetic radiation with matter, IR spectroscopy, UV-Vis spectroscopy, Beer-Lambert law

Fundamentals of chromatography: Basic principle, classification

Acids-Bases/Buffer Solution: Different concepts of acids-bases, Buffer solution, Mechanism of buffer solution, Henderson-Hasselbalch equation, Water chemistry and pH of water. Theories of Acid-Base Indicators.

Solutions: Solutions and their classification, Unit expressing concentration, Colligative properties and dilute solutions, Raoult's law, Van't Hoff's law of osmotic pressure

Thermochemistry: Laws of thermochemistry, Enthalpy, Heat of reaction, Heat of formation, Heat of neutralization, Kirchoff's equations, Hess's law

Electrochemistry: Conductors and nonconductors, Difference between electrolytic and metallic conduction, Electrolytic conductance, Factors influencing the conductivity of electrolytes, Kohlrausch Law and conductometric titrations

Chemical Equilibria: Equilibrium law/constant, K_p and K_c , Homogeneous and heterogeneous equilibrium, Van't Hoff's reaction isotherm, Le Chatelier's principle

Phase Rule: Basic terms and phase rule derivation, Phase diagram of water

Chemical Kinetics: Order and rate of reaction, Pseudo and zero order reaction, Half-life, Determination and factors affecting the rate of a reaction, First order reaction, Second order reaction, Collision theory, Transition state theory

CO-PO MAPPING

No. Course Outcome		PROGRAM OUTCOMES (PO)											
100.	course Outcome		2	3	4	5	6	7	8	9	10	11	12
	Be able to define/identify the different parameters												
CO1	and fundamental concepts regarding inorganic and	3											
	physical chemistry, spectroscopic techniques.												
	Be able to apply different theories on chemical												
CO2	bonding and hybridization to determine the structure	2											
	of molecules.												
	Be able to explain/illustrate /derive different												
$\ _{CO3}$	theories based on colligative properties, chemical	2											
	equilibrium, chemical kinetics, thermochemistry												
	and electrochemistry, spectroscopic techniques												
CO4	Solve/Analyze different problems related to		1										
	inorganic and physical chemistry		1										

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATIGY						
Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning Lecture Class Performance	42 -					

Self-Directed Learning	
Assignments	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week	Content	Assessment
Week 1	General Introduction/Atomic Structure	CT
Class 1	General introduction on the importance of chemistry for BME students, Concepts of	
	atomic structure, Different atom models	
Class 2	Concepts of atomic structure, Different atom models	
Class 3	Quantum numbers, Electronic configuration	
Week 2	Atomic Structure/Periodic Table	
Class 4	Hydrogen spectral lines, Heisenberg's uncertainty principle	
Class 5	Classification of elements according to electronic configurations	C1-1
Class 6	Periodic classification of elements	
Week 3	Periodic Table/Chemical Bonding	
Class 7	Periodic properties of elements, Properties and uses of noble gases	
Class 8	Alkali metals: Chemical properties and uses	
Class 9	Chemical bonding (types, properties, Lewis theory, VBT)	
Week 4	Chemical Bonding	
Class 10	Molecular orbital theory (MOT)	
Class 11	Molecular orbital theory (MOT)	
Class 12	Hybridization and shapes of molecules	
Week 5	Chemical Bonding/ Spectroscopic Techniques	
Class 13	Hybridization and shapes of molecules	
Class 14	Hybridization and shapes of molecules	CT-2
Class 15	Interaction of electromagnetic radiation with matter, IR spectroscopy	
Week 6	Spectroscopic Techniques	
Class 16	IR spectroscopy	
Class 17	UV-Vis spectroscopy	
Class 18	UV-Vis spectroscopy, Beer-Lambert law	
Week 7	Acids-Bases	
Class 19	Different concepts of acids-bases	
Class 20	Buffer solution, Mechanism of buffer solution	
Class 21	Henderson-Hasselbalch equation, Theories of Acid-Base Indicators	
Week 8	Acids-Bases/Solutions	CT-3/Mid Term
Class 22	Water chemistry and pH of water	
Class 23	Solutions and their classification, Unit expressing concentration	
Class 24	Effect of temperature and pressure on solubility, Validity and limitations of Henry's	
	law	

Week 9	Solutions/Thermochemistry	
Class 25	Colligative properties and dilute solutions, Raoult's law, deviation from Raoult's law,	
	Elevation of boiling point	
Class 26	Freezing point depression, Van't Hoff's law of osmotic pressure	
Class 27	Laws of thermochemistry, Enthalpy	
Week 10	Thermochemistry/Electrochemistry	
Class 28	Heat of reaction, Heat of formation, Heat of neutralization	
Class 29	Hess's law, Kirchoff's equations	
Class 30	Electrolytic conduction and its mechanism	
Week 11	Electrochemistry	
Class 31	Faraday's law, Kohlrausch Law, Debye-Huckel-Onsagar theory	
Class 32	Conductrometric titrations	
Class 33	Different types of cells	
Week 12	Chemical Equilibrium	
Class 34	Reversible reactions, Characteristics of chemical equilibrium, Law of mass action,	
	Equilibrium constant, Units of equilibrium constant	
Class 35	Relation between K _p and K _c ,Van't Hoff's reaction isotherm	CT-4
Class 36	Free energy and its significance Heterogeneous equilibrium, Le Chatelier's principle	
Week 13	Chemical Equilibrium /Phase rule/ Chemical Kinetics	
Class 37	Temperature dependence on equilibrium constant	
Class 38	Definitions related to phase rule, Phase diagram of water	
Class 39	Rate of reaction, Order of reaction, Molecularity of reaction, Pseudo and zero order	
	reaction,	
Week 14	Chemical Kinetics	
Class 40	First order reaction, Second order reaction, Half-life	
Class 41	Determination of order of reaction	
Class 42	Collision theory, Transition state theory	

ASSESSMENT STRATEGY

Compor	Grading	CO	Bloom's Taxonomy	
			CO1	C1
	Class Test/ Assignment	20%	CO2	C3
		2070	CO3	C2
			CO4	C4
Continuous Assessment (40%)	Class Performance	5%	-	-
	Class Ferrormance	370	-	-
	Mid term		CO1,	
		15%	CO3,	C1, C3, C4, C4
			CO4	
Final E	60%	CO2	С3,	
rmai E.	0070	CO3	C2	
		CO4	C4	
Total M	100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Modern Inorganic Chemistry S. Z. Haider
- 2. Concise Inorganic Chemistry J. D. Lee

REFERENCE BOOKS

- 1. Modern Inorganic Chemistry S. Z. Haider
- 2. Analytical Chemistry- G.D. Christian
- 3. Essentials of Physical Chemistry Bahl and Tuli
- 4. Physical Chemistry Atkins

REFERENCE SITES

-

5.1.1.4 CHEM 104 Chemistry Sessional

COURSE INFO	RMATION		
Course Code Course Title	: CHEM 104 : Chemistry Sessional	Lecture Contact Hours Credit Hours	: 3.00 : 1.50

PRE-REQUISITE

CHEM 103: General Chemistry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To learn the basic concepts of inorganic, organic and physical chemistry.

OBJECTIVE

- 1. To familiarize the students with experimentation of acid and base neutralization, titration and quantitative analysis of metals etc.
- 2. To make students proficient in iodimetric and iodometric analysis and complexometric titration etc.
- 3. To develop students' ability in estimating zinc, ferrous content in water sample by using various titrimetric methods, and UV-Vis spectrophotometric method.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	PO	СР	CA	KP	Assessment Methods
CO1	Be able to define the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.	Cl	1	-	-	1	T, Q, R, ASG
CO2	Be able to describe the different phenomena regarding iodimetric and iodometric method, complexometric titration, UV-Vis spectrophotometric method, etc.	C2	1	-	-	1	T, Q, R,ASG
CO3	Be able to estimate zinc, ferrous content in water sample by using various titrimetric, spectrophotometric methods and report writing	Р3	PO5, PO9	-	-	1	T, Q, R, ASG

)eparti		
		olems, CA-Complex A			vledge	Prof	file,T	T - T	est;	PR –	Proj	ect; Q	– Qui	z; ASC	j –
Assign	ment; Pr – P	resentation; R - Repor	t; F – Final Ex	xam)											
C1 - Re	emember	C2 - Understand	C3 - Apply	7	C4 Ana	- alyze		C5	5 - E	valua	ate		C6	- Crea	te
COLID	SE CONTI	ENT													
COUK	SE CONTI	NIN I													
-		cal analysis in the field Redox titration, Iodon	_	_				-			titrat	ion.			
SKILL	MAPPINO	j													
No.	Course L	earning Outcome		PR	OGR.	AM C)UT	COM	1ES	(PO))				
NO.	Course Lo	earning Outcome		1	2	3	4	5	6	7	8	9	10	11	12
		define the different p													
		acid and base neutraliz													
CO 1		nd quantitative analysi													
CO1		thers key words like pr		3											
		substances, secondary s													
		s, molarity, normality,	indicator,												
		t weights and so on.													
		describe the different													
CO2	rodometric method, complexometric														
CO2		etric	3												
	titration,														
	_	rophotometric method,													
		estimate zinc, ferrous													
CO3		nple by using various ti						3				2			
	writing	otometric methods and	report												
	witting												ļ		
(Numer	rical method	used for mapping whi	ch indicates 3	3 as h	igh, 2	as m	ediu	m, a	nd 1	as lo	ow le	vel of	match	ing)	
TEAC	HING LEA	RNING STRATEGY	•												
Teachir	ng and Lear	ning Activities										Engag	gemen	t (hour	s)
Face-to	-Face Learn	ning													
	Lecture											7			
		Tutorial / Studio										35			
		entered Learning										-			
Self-Di	irected Lear														
		to-face learning										-			
		of the previous and (or	_	lectur	e at h	ome						15			
Б .		on for final examination	n								\perp	10			
Formal	Assessmen											1			
		as Assessment										1			
	Lab Test											1			
	Quiz Viva											0.75 0.25			
Total	viva											0.25 70			
												, 0			
TEAC	HING MET	THODOLOGY													

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Class/ Week	Intended topics to be covered	Remarks
Class 1	Introduction	
Class 2	Standardization of Sodium Hydroxide (NaOH) Solution with Standard Oxalic Acid dihydrate (C2H2O4.2H2O) Solution.	
Class 3	Standardization of Hydrochloric Acid (HCl) Solution with standard Sodium Hydroxide (NaOH) Solution.	
Class 4	Standardization of Hydrochloric Acid (HCl) Solution with standard Sodium Carbonate (Na2CO3) Solution.	
Class 5	Determination of Calcium (Ca) Content in a calcium chloride dihydrate (CaCl2.2H2O) Solution with Standard Di-Sodium Ethylene Diamine Tetra Acetic Acid (Na ₂ -EDTA) Solution.	
Class 6	Standardization of Sodium ThiosulphatePentahydrate (Na2S2O3,5H2O) Solution with Standard Potassium Dichromate (K2Cr2O7) Solution.	
Class 7	Estimation of Copper (Cu) Content in a Copper Sulphate Pentahydrate (CuSO4.5H2O) (Blue Vitriol) Solutions by Iodometric Method with standard Sodium Thiosulphate Pentahydrate (Na2S2O3.5H2O) Solution.	
Class 8	Standardization of Potassium Permanganate (KMnO4) Solution with Standard Oxalic Acid dihydrate (C2H2O4.2H2O) Solution.	
Class 9	Determination of Ferrous (Fe) Content in an Ammonium Ferrous Sulphate (Mohr's Salt) [FeSO4.(NH4)2SO4.6H2O] Solution with Standard Potassium Permanganate (KMnO4) solution.	
Class 10	Spectroscopic determination of iron (II) by complexing with 1,10-phenanthroline	
Class 11	Practice Lab	
Class 12	Lab Test	
Class 13	Quiz Test	
Class 14	Viva	
ASSESSMEN	T STRATEGY	

			СО	Blooms Taxonomy
Components		Grading		•
Continuous	Report	20%	CO1, CO2, CO3	C1, C2, P3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C1, C2, P3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C1, C2, P3
(60%)	Quiz	30%	CO1, CO2, CO3	C1, C2, P3
(0078)	Viva	10%	CO1, CO2, CO3	C1, C2, P3
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, 5th Edition, Longman Scientific & Technical, 1989

REFERENCE BOOKS

- 1. G. D. Christian., Analytical Chemistry, 6th Edition, Wiley India Pvt. Limited, 2007
- 2. A. Jabbar Mian and M. Mahbubul Haque-Practical Chemistry

REFERENCE SITE

5.1.1.5 GES 101 Fundamentals of Sociology

COUF	RSE INFOI	RMATION							
Course	e Code e Title	: GES 101 : Fundamentals of Sociology	Lecture Contact H Credit Hours	: 2.00 : 2.00					
PRE-I	PRE-REQUISITE								
-									
CURF	RICULUM	STRUCTURE							
Outco	me Based E	ducation (OBE)							
SYNO	PSIS/RAT	TIONALE							
-									
OBJE	CTIVE								
1.	Understa	nding social phenomena							
COUF	RSE OUTC	COMES & GENERIC SKILLS							
No.		Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods	
CO1		o understand the basic nature, so ectives of sociology.	ope C2	1,2,6	-	1	1	T, F	
CO2		apply sociological imagination to social problems of BD society	C3 3 1 T, MID, F						
СОЗ		to understand the stages of so rocesses and methodologies	cial C2 6,7 1 T, F						

CO4	Be able to analyze different cultures, civilizations and different social problems and design solutions for those	C4	11	-	-	1	T, MID, F
CO5	Be able to understand and analyze social stratification, different social systems, socialism, capitalism and relate them to BD society	C2	6,7	-	-	1	T, F
СО6	Be able to apply contextual knowledge to assess societal and cultural issues in environmental context for sustainable development	СЗ	7	-	-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 – Create

COURSE CONTENT

Nature and scope; Sociological imagination, Perspectives of sociology, Stages of social research and research method, Culture and civilization, Socialization and self-development, Globalization and social changes, Media and individual, Social organizations and social problems, social stratification; industrial revolution, Capitalism and socialism, Work and economic life, Environment and human activities, Climate change and global risk, Population and human society, Urbanization and city development, Social changes and technology.

SKILL MAPPING

No.	Course Learning Outcome				PR	OGl	RAN	IO N	JTCO	OME	S (PO)	
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basic nature, scope and perspectives of sociology.	3	3				3						
CO2	Be able to apply sociological imagination to the context of social problems of BD society			3									
СОЗ	Be able to understand the stages of social research processes and methodologies						3	3					
CO4	Be able to analyze different cultures, civilizations and different social problems and design solutions for those											3	
CO5	Be able to understand and analyze social stratification, different social systems, socialism, capitalism and relate them to BD society						3	3					
CO6	Be able to apply contextual knowledge to assess societal and cultural issues in environmental context for sustainable development							3					

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28

Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	28
Revision of the previous and (or) subsequent lecture at home	14
Preparation for final examination	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	89

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Weeks	Topics	Assessment
1		
Lecture 1	Definition, nature and scope of sociology	
Lecture 2	Sociological imagination	
2		
Lecture 3	Perspectives of sociology	
Lecture 4	Orientation of sociological theories	CT – 1 and Midterm,
3		Final
Lecture 5	Social research and its process	
Lecture 6	Research designs and techniques.	
4		
Lecture 7	Introducing culture and its variations	
Lecture 8	Civilization	
5		
Lecture 9	Defining family and its changes	
Lecture 10	Socialization process and development of self	
6		
Lecture 11	Introducing globalization and its impact on human life	Midterm, Final
Lecture 12	Factors responsible to globalization	
7		
Lecture 13	Media and its impact in modern society	
Lecture 14	Addressing social problems of Bangladesh	
	MIDTERM	
8		
Lecture 15	Introducing social groups and organizations	
Lecture 16	Introducing bureaucracy and good governance	
9		CT – 2, FINAL
Lecture 17	Introducing social stratifications and social inequality	
Lecture 18	Poverty and its types and dimensions	
10		

Industrial revolution and aftermath	
Urbanization and city development	
Capitalism: features and influence	
Socialism: features and influence	
	1
Environment and human activities	CT – 3, FINAL
Climate change and global risk	
Population of Bangladesh: problem or prospect	_
Crime and deviance: a brief analysis	1
Review 1	- -
Review 2	
	Urbanization and city development Capitalism: features and influence Socialism: features and influence Environment and human activities Climate change and global risk Population of Bangladesh: problem or prospect Crime and deviance: a brief analysis Review 1

ASSESSMENT STRATEGY

Comi	onents	Grading	СО	Blooms Taxonomy			
Continuous Assessment Class Test/ Assignment 1-3		20%	CO1, CO2, CO3, CO4, CO5, CO6	C2, C3, C4			
(40%)	Class Participation	5%	CO3	C2			
	Mid term	15%	CO2, CO4	C3, C4			
			CO 1	C2			
			CO 2	C3			
F:1	Final Exam 60%		CO 3	C2			
Final	Exam	60%	CO 4	C4			
			CO 5	C2			
			CO 6	C3			
Total Marks 100%		100%					

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Sociology in Modules: by Richard Schaefer, 2nd edition, 2013
- 2. Sociology Primary Principles: by CN Shankar Rao

REFERENCE BOOKS

- 1. Anthony Giddens- 5th edition
- 2. Relevant journal

REFERENCE SITE

_

5.1.2 Level-1, Fall

5.1.2.1 PHY 127 Structure of matter, Electricity, Magnetism, and Mechanics

CURRIC Dutcome SYNOPS This course wivide spectors of the course with the cours	CULUM S e Based Edu SIS/RATIO arse is one of will be employed the employed to the employed to the explain. To solve make the end of the end of the end of the employed the employed to the employed the	f the basic physics in the hasized the basic concergineering disciplines. The different parameter at the basic theories of strumerical problems regard MES & GENERIC SE Course Outcome of the course, a student able to	ne field of structure, theories and concepts of ructure of materding structure. KILLS t should be arameters in	cture of matter and solve quar f structure of n ter, electricity	r, electric ntitative matter, ele and mag	city and r problems ectricity and rection	magnetis s which	sm and mo can be ap gnetism an hanics.	echanics. The pplicable in and mechanic		
CURRIC Dutcome SYNOPS This course wivide spectors of the course with the cours	EQUISITE CULUM S Based Edu SIS/RATIO Irse is one of evill be emple extrum of er TIVE To define t To explain To solve no SE OUTCO At the end Be able to outside to outside the end Be able to outside the end The explain to solve not t	TRUCTURE Ication (OBE) DNALE If the basic physics in the hasized the basic concergineering disciplines. The different parameter at the basic theories of strumerical problems regard MES & GENERIC SE Course Outcome of the course, a student able to Lefine different basic parameter at the basic parameter and the course and the course at the course of the course at the course	ne field of structure, theories and concepts of ructure of materding structure. KILLS t should be arameters in	cture of matter and solve quare f structure of n ter, electricity e of matter, ele	natter, electric and mag	eity and r problems ectricity a netism a	magnetis s which and mag nd mecl netism a	sm and me can be ap gnetism an hanics.	echanics. The pplicable in and mechanics.		
CURRIC Dutcome SYNOPS This course wivide spectors of the course with the cours	CULUM S e Based Edu SIS/RATIO urse is one of vill be emple ectrum of er TIVE To define t To explain To solve m SE OUTCO At the end	ncation (OBE) DNALE f the basic physics in the hasized the basic concergineering disciplines. The different parameter at the basic theories of strumerical problems regard MES & GENERIC SE Course Outcome of the course, a student able to lefine different basic parameter at the basic parameter	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele	matter, ele and mag	ectricity and magn	and mag	gnetism an hanics.	nd mechanic anics. Assessmer		
CURRIC Dutcome SYNOPS This course wivide spectors of the course with the cours	e Based Edu SIS/RATIO Irse is one of a control of the employer of the employe	ncation (OBE) DNALE f the basic physics in the hasized the basic concergineering disciplines. The different parameter at the basic theories of strumerical problems regard MES & GENERIC SE Course Outcome of the course, a student able to lefine different basic parameter at the basic parameter	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele	matter, ele and mag	ectricity netism a and magi	and mag	gnetism an hanics.	nd mechanic anics. Assessmer		
Dutcome SYNOPS This course wivide spectors of the spectors of	e Based Edu SIS/RATIO Irse is one of a control of the employer of the employe	ncation (OBE) DNALE f the basic physics in the hasized the basic concergineering disciplines. The different parameter at the basic theories of strumerical problems regard MES & GENERIC SE Course Outcome of the course, a student able to lefine different basic parameter at the basic parameter	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele	matter, ele and mag	ectricity netism a and magi	and mag	gnetism an hanics.	nd mechanic anics. Assessmer		
SYNOPS This course will wide specific to the s	rse is one of will be employed the employed the employed the true of error of the extra true of the explain. To solve the extra the end of the employed the emplo	product of the basic physics in the basic physics in the basic concerning disciplines. The different parameter at the basic theories of strumerical problems regard the basic problems of the course of the course, a student able to the basic parameter at the basic parameter a	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele	matter, ele and mag	ectricity netism a and magi	and mag	gnetism an hanics.	nd mechanic anics. Assessmer		
This course will wide specific the specific transfer of transfer of the specific transfer of transfer of the specific transfer of	rise is one of vill be employed the employed	f the basic physics in the hasized the basic concergineering disciplines. The different parameter at the basic theories of strumerical problems regard MES & GENERIC SE Course Outcome of the course, a student able to	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele	matter, ele and mag	ectricity netism a and magi	and mag	gnetism an hanics.	nd mechanic anics. Assessmer		
tourse wivide spectors with the spector of the spec	rill be emplored by the certrum of erectrum of erectru	he different parameter a the basic theories of str americal problems regar MES & GENERIC SE Course Outcome of the course, a student able to lefine different basic pa	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele	matter, ele and mag	ectricity netism a and magi	and mag	gnetism an hanics.	nd mechanic anics. Assessmer		
No. B th st la	To define to the control of the cont	me different parameter a the basic theories of strumerical problems regard the S& GENERIC SE Course Outcome of the course, a student able to the different basic parameters and the state of the course of the course of the course and the state of the course and the state of the course of the course and the state of the course and the state of the course of the course and the state of the course of the cours	nd concepts or ructure of materding structure KILLS	f structure of n ter, electricity e of matter, ele Bloom's	natter, ele and mag ectricity a	ectricity and magi	and mag nd mecl netism a	gnetism an hanics. and mecha	nd mechanic unics. Assessmer		
1. 2. 3. 3. COURSI	TIVE To define t To explain To solve note SE OUTCO At the end Be able to O	he different parameter a the basic theories of str americal problems regar MES & GENERIC SE Course Outcome of the course, a student able to	ructure of mat rding structur KILLS t should be	ter, electricity e of matter, ele Bloom's	and mag	netism a and magi	nd mecl	hanics.	Assessmer		
1. 7 2. 7 3. 7 COURSI	To define to To explain To solve more to the control of the contro	the basic theories of strumerical problems regarmerical problems regarmerical problems regarmerical problems. See GENERIC SEE Course Outcome of the course, a student able to	ructure of mat rding structur KILLS t should be	ter, electricity e of matter, ele Bloom's	and mag	netism a and magi	nd mecl	hanics.	Assessmen		
2. 3. COURSI	To explain To solve m EE OUTCO At the end Be able to o	the basic theories of strumerical problems regarmerical problems regarmerical problems regarmerical problems. See GENERIC SEE Course Outcome of the course, a student able to	ructure of mat rding structur KILLS t should be	ter, electricity e of matter, ele Bloom's	and mag	netism a and magi	nd mecl	hanics.	Assessmer		
No. B th m st la	To solve moderate To Selve mod	MES & GENERIC SE Course Outcome of the course, a student able to lefine different basic pa	KILLS t should be arameters in	Bloom's	ectricity a	and magi	netism a	and mecha	Assessmen		
No. B th ms st la	At the end	MES & GENERIC SE Course Outcome of the course, a student able to lefine different basic pa	XILLS t should be arameters in	Bloom's					Assessmen		
No. B th st la	At the end	Course Outcome of the course, a student able to lefine different basic pa	t should be		РО	СР	CA	KP			
B th m st la	Be able to (of the course, a student able to	arameters in		РО	СР	CA	KP			
B th m st la	Be able to (able to	arameters in		РО	СР	CA	KP			
CO1 th		lefine different basic pa		Taxonomy					Wicthods		
CO1 th		_									
CO1 m st la	he field of	structure of matter ele									
st la			the field of structure of matter, electricity and								
la	-	and mechanics such	-	C1	1	-	-	1	MT, T, F		
	structure, crystal defects, charge, Coulombs law, flux, momentum, wave function etc.										
I K											
		xplain different basic the ructure of matter, ele-									
		and mechanics such as	-	C2	1	-					
(1)	-	y, bonding energy, el					- 1	1	MT, T, F		
		nent, Faraday's law,									
	equation etc	•									
В	Be able to	solve quantitative prob	olems in the								
		ructure of matter, ele-							MT, T, F		
	-	and mechanics such		C3, C4	1	-	_ !	2	ASG		
1 ^	_	ctor, Miller indices,	•						7150		
m	nagnetism,	classical & quantum me	chanics, etc.								
CP – Co	omplex Pro	blems, CA – Complex A	Activities, KP	– Knowledge	Profile,	T – Test	, PR – F	Project, Q	– Quiz, AS		
		Presentation, R – Repor									
~1 ~		G2 II I									
C1 - Rem	nember	C2 – Understand	C3 - Apply	C4 - Ana	ılyze	C5 - E	valuate	C6	C6 – Create		

Structure of matter: States of matter, plasticity and elasticity, crystalline and non-crystalline solids, single crystal and poly-crystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, Miller indices, relation between inter-planar spacing and Miller indices, Bragg's law, methods of determination of inter-planar spacing from diffraction patterns; defects in solids: point defects, line defects, surface defects, bonds in solids, band theory of solids: distinction between metal, semiconductor and insulator, inter-atomic distances, calculation of cohesive and bonding energy.

Electric ty and Magnetism: Electric charges and Coulomb's law, quantization of charge, electric field, electric field due to: point charge, dipole, charged rod and charged ring, electric flux and calculation of flux, Gauss' law, application of Gauss' law, electric potential, calculation of electric potential, equipotential surfaces, energy and electric potential, Capacitors, capacitance for different capacitors, energy store in a capacitor, dielectrics and atomic view of dielectrics and Gauss' law with dielectrics, Current density, drift speed, resistances, ohm's law and resistivity-an atomic view, Biot-Savart law and Ampere's law and their applications, Laws of electromagnetic induction, self-inductance and mutual inductance, Magnetic force on a current carrying conductor, Torque on a current carrying loop, Hall effect, solenoid and toroid, Maxwell's equations, Magnetic field intensity, susceptibility, permeability, magnetization; classification of magnetic materials, soft and hard magnetic materials, superparamagnetic materials and their applications.

Mechanics: Linear momentum of a system of particles, conservation of linear momentum, elastic and inelastic, collisions, angular kinematics, torque, rigid bodies, moment of inertia, angular momentum of a system of particles, conservation of angular momentum. Introduction to Quantum Mechanics, wave function, uncertainty principle, postulates of quantum mechanics, Schrödinger time independent and time dependent equation, eigen value, expectation value, probability, particle in a potential box, calculation of energy.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.			2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to define different basic parameters in the field of structure of matter, electricity and magnetism and mechanics such as crystal structure, crystal defects, charge, Coulombs law, flux, momentum, wave function etc.	V											
CO2	Be able to explain different basic theories in the field of structure of matter, electricity and magnetism and mechanics such as such as the Bragg's law, bonding energy, electric field, dipole moment, Faraday's law, Schrödinger equation etc	V											
CO3	Be able to solve quantitative problems in the field of structure of matter, electricity and magnetism and mechanics such as such as packing factor, Miller indices, electricity, magnetism, classical & quantum mechanics, etc.	V											

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level of Matching	Justification

CO1-PO1	3	The conceptual knowledge of the natural sciences applicable to the engineering discipline
CO2-PO1	3	The theory-based knowledge of the natural sciences applicable to the engineering discipline
CO3-PO1	3	The numerical analysis based knowledge of the natural sciences applicable to the engineering

TEACHING LEARNING STRATEGY

Teaching and Learning Activities Engagement (I			
Face-to-Face Learning			
Lecture	42		
Practical / Tutorial / Studio	-		
Student-Centred Learning	-		
Self-Directed Learning			
Non-face-to-face learning	42		
Revision of the previous and (or) subsequent lecture at home	21		
Preparation for final examination	21		
Formal Assessment			
Continuous Assessment	3		
Final Examination	3		
Total	132		

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Content	Assessment
1		
Lecture 1	Introductory class: Brief discussion on total syllabus, basic requirements of the course, assessment of the course.	
Lecture 2	States of matter, classification of solids, plasticity and elasticity, types of crystalline solids, crystal, lattice, basis, crystal structure, plane lattice, space lattice, Bravais and non-Bravais lattices	CT – 1 and Midterm, Final
Lecture 3	Unit cell, lattice parameters, primitive and non-primitive cells and their distinctions, lattice symbols, crystal structure of NaCl and CsCl	
2		
Lecture 4	Unit face, axial units: linear and numerical parameters and, Miller indices	
Lecture 5	Atomic radius, packing factor and coordination number for different structures	
Lecture 6	Relation between lattice constant and density of solids and related numerical problems.	
3		

	Course Offered by O	ther Departments
Lecture 7	Inter-planer spacing, relation between inter-planar spacing and Miller indices, problems	
Lecture 8	X-ray diffraction, Bragg's law, methods of determination of inter- planar spacing from diffraction patterns, problems	
Lecture 9	Defects in solids: point defects, line defects, surface defects	
4	-	
Lecture 10	Defects in solids: point defects, line defects, surface defects	
Lecture 11	Atomic arrangement in solid: different types of bonds in solids	
Lecture 12	Band theory of solids: valence band, conduction band, energy gap, distinction between metal, semiconductor and insulator	
5		
Lecture 13	Potential, cohesive energy, binding energy, Madelung constant, inter-atomic distance, calculation of total potential energy of a pair of atoms	Midterm, Final
Lecture 14	Calculation of total potential energy at the equilibrium separation of an ionic crystal, problems	
Lecture 15	Electric charges and Coulomb's law, quantization of charge, electric field, electric field due to : point charge, uniformly charged wire, charged ring, charged disk	
6		
Lecture 16	Electric field due to dipole, dipole in an electric field, electric flux and calculation of flux, Gauss' law	
Lecture 17	Gauss' law and Coulomb's law for a point charge, application of Gauss' law for : charged sphere, line of charge, sheet of chare, parallel charged plates	
Lecture 18	Electric potential, potential and electric field strength, calculation of electric potential: due to a point charge, dipole	
7		
Lecture 19	Calculation of electric potential: charged ring, charged disk, electric potential energy, equipotential surfaces, calculation of electric field from the potential	
Lecture 20	Capacitors, capacitance for different capacitors	
Lecture 21	Energy store in a charged capacitor, energy density, dielectrics and atomic view of dielectrics and Gauss' law with dielectrics	
	MIDTERM	
8		
Lecture 22	Concept of electric current, current density, drift velocity, resistances, ohm's law and resistivity-an atomic view,	
Lecture 23	Magnetic force on a current carrying conductor, torque on a current carrying loop, Hall effect	
Lecture 24	Biot-Savart law and Ampere's law and their applications, solenoid and toroid	CT – 2, FINAL
9		
Lecture 25	Laws of electromagnetic induction, self-inductance and mutual inductance	
Lecture 26	Maxwell's equations	
Lecture 27	Magnetization; magnetic field intensity, susceptibility, permeability	

	Course Offered by	Other Departments
10		
Lecture 28	Classification of magnetic materials, magnetization curves, susceptibility curves, M-H hysteresis loop, soft and hard magnetic materials	
Lecture 29	Superparamagnetic materials and their applications	
Lecture 30	Mechanics : classical, quantum and statistical mechanics, centre of mass, centre of gravity	
11		
Lecture 31	Coincidence of centre of mass and centre of gravity, motion of the centre of mass, problems	
Lecture 32	Linear momentum of a particle, linear momentum of a system of particles, conservation of linear momentum	
Lecture 33	Elastic and inelastic, collisions, angular kinematics, torque, rigid bodies	
12	Mechanics	CT – 3, FINAL
Lecture 34	Moment of inertia of different objects, problems	,
Lecture 35	angular momentum of a particle, angular momentum of a system of particles, principle of conservation of angular momentum,	
Lecture 36	Introduction to Quantum Mechanics, wave function, uncertainty principle	
13		
Lecture 37	Fundamental postulates of wave mechanics, wave function, uncertainty principle	
Lecture 38	Time dependent Schrödinger's equation	
Lecture 39	Time independent Schrödinger's equation	FINAL
14		FINAL
Lecture 40	Eigen value, expectation value, probability	-
Lecture 41	Particle in a potential box	
Lecture 42	Calculation of energy	
	FINAL EXAMINATION	1
ASSESSMENT S	STRATEGY	
	CO Blo	ooms Taxonomy

	,	Grading	СО	Blooms Taxonomy				
Comp	Components							
	Class Test/ Assignment	20%	CO1, CO3	C1, C2				
Continuous Assessment	Class Attendance	5%						
(40%)	Class Participation	5%		A2				
	Midterm	10%	CO2, CO3	C1, C2				
	Final Exam		CO 1	C1				
Final			CO 2	C1, C2, C4				
			CO 3	C3, C4				
Total	Marks	100%						
(CO = Cours	(CO = Course Outcome, C = Cognitive Domain)							

REFERENCE BOOKS

- 1. Physics for Engineers: Part-I and Part-II: Dr Giasuddin Ahmad
- 2. Physics, Volume I and Volume II: Resnick and Halliday
- 3. Fundamentals of Physics : Halliday, Resnick and Walker
- 4. Physics for Scientists and Engineers: Serway and Jewett
- 5. Introduction to Solid State Physics: Charles Kittle
- 6. Solid State Physics: S. O. Pillai
- 7. Solid State Physics: Ali Oma
- 8. Fundamentals of Solid State Physics: B.S. Saxena, R.C. Gupta, P.N. Saxena
- 9. B.Sc Physics: C. L. Arora.
- 10. Concept of Electricity and Magnetism: Rafiqullah, Roy, Huq
- 11. Electricity and Magnetism: K. K. Tewari
- 12. Elements of Quantum Mechanics: Kamal Singh, S.P. Singh
- 13. Concepts of Modern Physics : Arthur Beiser
- 14. Quantum Mechanics : Gupta, Kumar & Sharma

REFERENCE SITE

_

5.1.2.2 PHY 128 Physics Sessional

COURSE INFORMATION

Course Code : PHY 128 Lecture Contact Hours : 3.00

Course Title : Physics Sessional Credit Hours : 1.50

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is a laboratory course for the basic physics in the field of waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics. The course will be emphasized the fundamental experiments on different fields of physics which can be applicable in a wide spectrum of engineering disciplines. This laboratory course will enable students to understand basic physics practically as well as do work with team or individual.

OBJECTIVE

- 1. To develop basic physics knowledge practically
- 2. To practice use of basic scientific instrument.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes			CP	CA	KP		
-----	-----------------	--	--	----	----	----	--	--

	At the end of the course, a student should be able to	Correspondin g POs	Bloom's Taxonomy			Assessm ent Methods
CO1	Be able to define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C1		K1	R, Q, F
CO2	Be able to describe the different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C1		K1	R, Q, T, F
CO3	Be able to construct Experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO9	C2		K2	R, Q, T, F
CO4	Be able to prepare a report for an experimental work.	PO10	C2		K2	R

(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, CS – Case study, MT- Mid Term Exam, F – Final Exam)

COURSE CONTENT

Quantitative measurement of different parameters in the field of waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics such as:

Specific resistance of materials, high resistance, resistance of a galvanometer, Electrochemical equivalent (ECE) of copper, comparison of the E.M.F's of two cells, radius of curvature, wavelength of light, focal length of lens, specific rotation of sugar, refractive index of a liquid, thermal conductivity of a bad conductor, temperature co-efficient of resistance, pressure co-efficient of a gas, specific heat of a liquid, acceleration due to gravity, spring constant, rigidity modulus, young's modulus, moment of inertia, conservation of linear momentum, frequency of a tuning fork, surface tension, Planck's constant.

CO-PO MAPPING													
No.	Course Outcome	PROGRAM OUTCOMES (PO)											
No.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	3											
CO2	Be able to describe the different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	3											

Course Offered by Other Departments

CO3	Be able to construct Experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.					2		
CO4	Be able to define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.						1	

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping Level of Matching		Justification						
CO1-PO1	3	The conceptual knowledge of the natural sciences applicable to the engineering discipline						
CO2-PO1	3	The descriptive knowledge of the natural sciences applicable to the engineering discipline						
CO3-PO9	2	Able to do work or complete a task as an individual and as a team						
CO4-PO10	1	Capable to write a report on an experimental work						

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Experiment	35
Self-Directed Learning	
Preparation of Lab Reports	21
Preparation for the Lab Test	13
Preparation of Quiz	9
Preparation of viva	9
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Final viva	1

	C	ourse Offered by Othe	er Departm	ents		
Fir	nal lab exam		3			
	Total		112			
TEACHIN	G METHODOLOGY	,				
Lecture fol Method	lowed by practical experiments and discussion, Co-operative	and Collaborative N	Method, Pro	oject Based		
COURSE S	CHEDULE					
Weeks	Topics			Remarks		
Week-1	Introductory class: Brief discussion on total syllabus, basevaluation system of the course, grouping, visit different introduction to different basic equipment					
Week-2	Determination of the specific resistance of a wire using meter length of a concave lens by auxiliary lens method	bridge / Determination	on of focal	Perform any one		
Week-3 Determination of high resistance by the method of deflection / Determination of resistance of a galvanometer by half deflection method / Determination of specific heat of a liquid by the method of cooling						
Week-4	Determination of ECE of copper by using copper voltameter / Determination of the Young's					
Week-5	Week-5 Determination of the wavelength of sodium light by a spectrometer using a plane diffraction grating/ Determination of the moment of inertia of a Fly-wheel about its axis of rotation					
Week-6	Week-6 Determination of the radius of curvature of a plano-convex lens by Newton's ring method/ Determination of the temperature co-efficient of resistance of the material of a wire using a meter-bridge					
Week-7	Determination of the specific rotation of sugar by polarimeter, index of a liquid by plane mirror and pin method using a con-		refractive	Perform any one		
Week-8	Determination of the thermal conductivity of a bad conductor of the law of conservation of linear momentum / Determinatio by capillary tube method and hence to verify Jurin's law			Perform any one		
Week-9	Determination of the value of g acceleration due to grav pendulum / Comparison of the E.M.F's of two cells by a pote		compound	Perform any one		
Week-10 Determination of the spring constant, effective mass and the rigidity modulus of the spring / Determination of the pressure co-efficient of a gas at constant volume by constant volume air thermometer						
Week-11 Determination of the Planck's constant using photoelectric effect / Determination of the frequency of a tuning fork by Melde's experiment						
Week-12 Viva & lab final experimental exam						
Week-13	Viva & lab final experimental exam					
Week-14	Quiz exam					
ASSESSM	ENT STRATEGY					
CO Blooms T						
		1				

	Components	Grading				
Continuous Assessment	Class performance/ Assignment	10%	CO1	C1		
(40%)	Report Writing/ Assignment	30%	CO1, CO4	C1, C2		
	Lab test	30%				
Final Exam (60%)	Viva	10%	CO1, CO2, CO3	C1, C2		
	Quiz	20%				
	Total Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, A = Affective Domain, P = Psychomotor Domain)

REFERENCE BOOKS

1. Practical physics for degree students: Dr Giasuddin and Md. Sahabuddin

2. Practical Physics: G. L. Squires

3. B.Sc. Practical Physics: C. L Arora

4. Practical Physics: S.L. Gupta and V. Kumar

5.1.2.3 MATH 105 Vector Analysis, Matrix and Coordinate Geometry

COURSE INFO	COURSE INFORMATION							
Course Code	: Math 105	Lecture Contact Hours	: 3.00					
Course Title	: Vector Analysis, Matrix and Coordinate Geometry	Credit Hours	: 3 .00					

PRE-REQUISITE

Course Code: Math 105

Course Title: Vector Analysis, Matrix and Coordinate Geometry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To teach the students the basic Concepts, Principles and operations of Vector, Matrices and Application of Geometry. The aim of this course is to develop the analytical capability of Vector, Matrices and Geometry. Finally this course is designed to develop a capability of students to solve practical problems.

OBJECTIVE

- 1. Be able to impart basic knowledge on the Vector Analysis, Matrix and Geometry.
- 2. Achieving ability to familiarize the students with the working principle of calculating differentiation and integration of vector valued functions in Cartesian, cylindrical and spherical geometry.
- Be able to provide knowledge on using concept of vector, matrix and Geometry in engineering area and solve other applied problems.
- 4. Be expert in imparting the depth knowledge on the vector analysis, matrix and co-ordinate geometry.

COU	COURSE OUTCOMES & GENERIC SKILLS						
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Define and identify the physical explanation of different vector notation, explain the basic concept of matrix, 2D and 3D geometry.	C1-C2	1	1		1, 3	T, F
CO2	Interpret mathematics, science and engineering such as calculating volume and area of any object in vector field.	C2	1	1		3	T, Mid Term Exam, F
CO3	Be proficient to analyses and demonstrate the technique in engineering problems which is taught in vector, matrix and Geometry.	C1,C3	1	1,3		3	Mid Term Exam, F, ASG

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Vector Analysis: Definition of Vector, Scalars and Vectors, Equality of direction ratios and vectors, Addition and Subtraction of Vectors, Multiplication of vectors by scalars, Position Vector of a point, Scalar and vector products of two vectors and their geometrical interpretation, Triple products and multiple products, Differentiation of vectors, Gradient of scalar functions, Divergence and curl of point functions, physical significance of gradient, divergence and curl, Definition of line, surface and volume integral, Integration of Vectors, Green's, stroke's and Gauss theorem and their application.

Matrix: Definition of Matrix, different types of matrices, Algebra of Matrices, Multiplication of matrices, Transpose and adjoint of a matrix, inverse of a matrix, rank and elementary transformation, solution of linear equation or System of Linear Equation, linear dependence and independence of vectors, quadratic forms, matrix polynomials, determination characteristic roots and vectors, null space and nullity of matrix, characteristic subspace of matrix, Eigen values and Eigen Vectors, Caley-Hamilton theorem.

Coordinate Geometry: Introduction to geometry, Rectangular co-ordinates, Angle between two lines, Transformation of co-ordinates, changes of axes, The plane-angle between two planes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties, circles (tangents, normal, chord of contact, pole and polar), equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves, equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points), Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid.

SKILL MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
110.	Course outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to define and identify the physical explanation												
CO1	of different vector notation, explain the complete	3											
concept about matrix, 2D and 3D geometry.													
	Be able to interpret mathematics, science and												
CO2	engineering such as calculating volume and area of any	3											
	object in vector field.												
	Be proficient to determine and find the technique to												
	obtain the inverse matrix and calculate length, volume												
	and area of objects related to engineering study by using												
CO3	vector, solve the system of linear equations using matrix	3											
	and the problems related to the pair of straight lines,												
	circles, system of circles, parabola, ellipse etc.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Justification for CO-PO mapping:

Mapping	Corresponding	Justifications
	Level of matching	
CO1-PO1(a)	3	The knowledge of mathematics, science and engineering has to be applied to
		describe the operation of being able to identify the physical explanation of
		different vector notation, explain the complete concept about matrix, 2D and 3D
		geometry.
CO2-PO1(a)	3	In order to interpret mathematics, science and engineering such as calculating
		inverse matrix and volume and area of any object in vector field.
CO3-PO1(a)	3	In order to construct and calculate the area of objects related to engineering study
		by using vector, solve the system of linear equations using matrix and geometry
		related problems.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

XX7. 1 4		
Week 1		
Class 1	Definition of vector, Scalars and Vectors, Equality of direction ratios and vectors, Addition,	
	Subtraction and multiplication of vectors,	
Class 2	Position vector of a point, Scalar and vector products of two vectors and their geometrical	
	interpretation, Triple products and multiple products,	OT 1
Class 3	Linear dependence and independence of vectors, Differentiation of vectors,	CT 1
Week 2		
Class 4	Gradient of scalar functions, Divergence and curl of point functions,	
Class 5	Physical significance of gradient, divergence and curl	
Class 6	Physical significance of gradient, divergence and curl	
Week 3		
Class 7	Integration of vectors (line, surface and volume integrals)	
Class 8	Integration of vectors (line, surface and volume integrals)	
Class 9	Integration of vectors (line, surface and volume integrals)	
Week 4		
Class 10	Green's, Stoke's and Gauss's theorem and their application	CT 2
Class 11	Green's, Stoke's and Gauss's theorem and their application	
Class 12	Green's, Stoke's and Gauss's theorem and their application	
Week 5		
Class 13	Definition of Matrix, different types of matrices, Algebra of Matrices, Multiplication of matrices,	
Class 14	Transpose and adjoint of a matrix, inverse of a matrix,	
Class 15	Rank and elementary transformation.	
Week 6		
Class 16	Solution of linear equation or System of Linear Equation,	
Class 17	Solution of linear equation or System of Linear Equation,	
Class 18	Quadratic forms, matrix polynomials, determination characteristic roots and vectors	
Week 7		
Class 19	Null space and nullity of matrix, characteristic subspace of matrix,	
Class 20	Eigen values and Eigen Vectors	
Class 21	Caley-Hamilton theorem - concepts and problems	

	Course Offered by Other Department	.5
Week 8		
Class 22	Introduction to geometry, Rectangular co-ordinates, Angle between two lines,	
Class 23	Transformation of co-ordinates, changes of axes,	Mid
Class 24	The plane-angle between two planes, pair of straight lines	Term
Week 9		101111
Class 25	Pair of straight lines, general equation of second degree and reduction to its standard forms	
	and properties,	
Class 26	Circles (tangents, normal, chord of contact, pole and polar),	
Class 27	Circles (tangents, normal, chord of contact, pole and polar),	
Week 10		
Class 28	Equation of conics,	
Class 29	Equation of conics,	
Class 30	Homogeneous equations of second degree,	
Week 11		CT 4
Class 31	Angle between straight lines, pair of lines joining the origin to the point of intersection of two	
	given curves, equations of parabola, ellipse in Cartesian and polar coordinates,	
Class 32	Pair of lines joining the origin to the point of intersection of two given curves, equations of	
	parabola, ellipse in Cartesian and polar coordinates,	
Class 33	Pair of lines joining the origin to the point of intersection of two given curves, equations of	
	parabola, ellipse in Cartesian and polar coordinates,	
Week 12		
Class 34	System of circles (radical axes, coaxial circles, limiting points),	
Class 35	System of circles (radical axes, coaxial circles, limiting points),	
Class 36	Three dimensional co-ordinate system,	
Week 13		
Class 37	Direction cosines, projections,	
Class 38	The plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane).	
Class 39	The plane (angle between two planes, parallel & perpendicular plane, distance of a point from	
	a plane).	
Week 14		
Class 40	The straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid)	
Class 41	The straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid)	
Class 42	The straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid)	

ASSESSMENT STRATEGY

			CO	DI T
Components			СО	Blooms Taxonomy
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO2	C1, C2, C3
Continuous Assessment (4070)	Class Test Assignment 1-3	2070	CO 2	C3,A6

Course Offered by Other Departments

	Class Participation	5%	CO3	C2,C3
	Mid term	15%	CO 2, CO3	C2,C3
			CO 1	C1, C2
Final Exam			CO 2	C1, C2, C3
			CO 3	C3
Total M	Iarks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- l. Vector Analysis Seymour Lipschutz, Dennis Spellman and Murray R. Spiegel, Schaum's outlines.
- 2. Vector Analysis M. D. Raisinghania.

REFERENCE BOOKS

- 1. Elementary Linear algebra Wiely, Howard Anton and Chris Rorres.
- 2. A Text Book on Co-ordinate Geometry with Vector Analysis Rahman & Bhattacharjee.
- 3. Analytic Geometry Abdur Rahman.
- 4. Analytical Solid Geometry- Shanti Narayan.

REFERENCE SITES

-

5.1.2.4 CHEM 125 Physical and Bio-organic Chemistry

COURSE INFORMATION						
Course Code	: CHEM 125	Lecture Contact Hours	: 3.00			
Course Title	: Physical and Bio-organic	Credit Hours	: 3.00			
	Chemistry					

PRE-REQUISITE

CHEM 103 - General Chemistry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course introduces students to the theories and structures of chemicals in thermodynamics and equilibrium, hydrocarbons, and biomolecules. Principles of thermodynamics and free energy, chemical equilibrium, reaction mechanisms and rates, hydrocarbon structures and reactions, structures and mechanisms of sugars, polysaccharides, proteins, and biomolecules are covered in depth.

OBJECTIVE

- 1. To acquire sufficient knowledge of the concepts and parameters of thermodynamics, entropy, equilibrium, and reaction rates.
- 2. To analyze reaction rates and chemical equilibrium
- 3. To describe the structures, synthesis, and reaction mechanisms of various hydrocarbons and organic compounds
- 4. To be able to explain the chemistry behind different bioconjugate techniques, biomolecules, sugars, proteins, lipids, and biological molecules

COURSE OUTCOMES & GENERIC SKILLS

No	Course Outcome	Bloom's BO		CD	СА	V D	Assessment
No.	Course Outcome	Taxonomy	PO	CP	CA	KP	Methods

CO1	Be able to understand concepts of	C2	1	1	-	1, 2	T, F
	thermodynamics, kinetics, and entropy						
CO2	Be able to apply the concepts of thermodynamics and kinetics to calculating reaction rates and energy	С3	2	1	-	1, 2	T, F
СОЗ	Be able to remember/classify the structure, reactions, and functions of carbohydrates, proteins and lipids	C1	1	-	-	1	MID, F
CO4	Be able to understand bioconjugate techniques, and structure and chemistry of biomolecules found in the body	C2	1	-	-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create

COURSE CONTENT

Thermodynamics and Kinetics: Overview of thermodynamics and kinetics, First law of thermodynamics, second law of thermodynamics and entropy, Free energy, 3rd law of thermodynamics, Gibbs Free energy, equilibrium and free energy, reaction mechanism, Arrhenius equation and catalysis, rates of reaction, Kinetic theory of gases, ideal gas law Organic chemistry: Chemistry of hydrocarbons, Synthetic methods of common organic compounds, Reaction mechanism of typical organic reactions, Structure determination of organic compounds, alkenes, aromatics, ether, aldehyde, esters, amide, amine.

Biomolecules: Basic chemistry of biomolecules and bio-conjugation techniques. Molecular logic of living system, Biomolecules and cells, Sugars, polysaccharides, lipids-triglycerides, phospholipids, amino acids, amino acid sequences, primary, secondary, tertiary and quaternary structure; classification of proteins, biological membranes, chemistry of antibody, protein synthesis.

SKILL MAPPING

NI.	Course I coming Outcome	PR	OGR	AM (DUT	CON	ИES	(PO)						
No.	Course Learning Outcome 1 2 3 4		5	6	7	8	9	10	11	12					
CO1	Be able to understand concepts of	3													
	thermodynamics, kinetics, and entropy	3	3		3										
GO.2	Be able to apply the concepts of														
CO2	thermodynamics and kinetics to calculating	3													
	reaction rates and energy														
~~•	Be able to remember/classify the														
CO3	structure, reactions, and functions of	3													
	carbohydrates, proteins and lipids														
GO 4	Be able to understand bioconjugate														
CO4	techniques, and structure and chemistry of	3													
	biological molecules found in the body														

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
Lecture	42			
Practical / Tutorial / Studio	-			
Student-Centred Learning	-			
Self-Directed Learning				
Non-face-to-face learning	42			
Revision of the previous and (or) subsequent lecture at home	21			

	Course Offered by	Other Departments
Preparat	ion for final examination	21
Formal Assessmen	nt	
Continuo	ous Assessment	2
Final Ex	amination	3
Total		131
TEACHING ME	THODOLOGY	
Lecture and discus	ssion, Co-operative and collaborative method, Problem based method	
COURSE SCHE	DULE	
Week	Content	Assessment
1	Course introduction	
Lecture 1	Course Introduction	
Lecture 2	Introduction to Thermodynamics and Kinetics: Overview of	
	thermodynamics and kinetics from chemistry I	
Lecture 3	Heat and enthalpy	CT – 1 and Midterm,
2	Thermodynamics and Free Energy, First law of thermodynamics	Final
Lecture 4	Second law of thermodynamics and entropy, Free energy	1
Lecture 5	3 rd law of thermodynamics	-
Lecture 6	Gibbs Free energy	-
3	Equilibrium and Reaction mechanisms	1
Lecture 7	Equilibrium and free energy	-
Lecture 8	Reaction mechanism	_
Lecture 9	Arrhenius equation and catalysis	-
4	Rates of reaction and gas law	_
Lecture 10	rates of reaction	-
Lecture 11	Kinetic theory of gases, ideal gas law	-
Lecture 12	Review Class	_
5	Chemistry of hydrocarbons	
Lecture 13	Organic chemistry: Chemistry of hydrocarbons	_
Lecture 14	Organic chemistry: Chemistry of hydrocarbons,	-
Lecture 15	Synthetic methods of common organic compounds	-
6	Reaction mechanisms and structure of organic compounds	-
Lecture 16	Reaction mechanism of typical organic reactions	_
	Reaction mechanism of typical organic reactions Reaction mechanism of typical organic reactions	Midterm, Final
Lecture 17		Midlerm, Finai
Lecture 18	Structure determination of organic compounds, alkenes,	
7	aromatics	
	Structure of organic compounds	
Lecture 19	ether, aldehyde, esters	_
Lecture 20	amide, amine	_
Lecture 21	Basic chemistry of biomolecules	
MIDTERM		1
8	Sugars	
Lecture 22	Sugars and their types, sugar derivatives and biologically	
	relevant sugars	_
Lecture 23	structure and isomerism	
Lecture 24	Reactions of sugars	
9	Polysaccharides	CT 2 FD I I
Lecture 25	polysaccharides and glycosidic bonds, amylose and amylopectin	CT – 2, FINAL
1		

	30 2	<u> </u>		
Lecture 26	Starch, glycogen, and cellulose			
Lecture 27	heteropolysaccharides			
10	10 Lipids			
Lecture 28	lipids-triglycerides			
Lecture 29	Phospholipids			
Lecture 30	Lipid membranes and structures			
11	Proteins and their structure			
Lecture 31	amino acids, amino acid sequences			
Lecture 32	primary, secondary, tertiary and quaternary structure			
Lecture 33	classification of proteins			
12	Chemistry of biological molecules	CT – 3, FINAL		
Lecture 34	biological membranes			
Lecture 35	chemistry of antibody			
Lecture 36	Protein Synthesis			
13	Bioconjugate techniques			
Lecture 37	Introduction to bioconjugation techniques			
Lecture 38	EDC-NHS chemistry, Imidoester, Carbodiimide chemistry			
Lecture 39	DCC chemistry, maleimide chemistry			
14	Bioconjugation techniques continued			
Lecture 40	Carbonyl group reactive chemistry, photoreactive chemistry	- FINAL		
Lecture 41	PEGylation and surface modification, protein cross-linkers with	TINAL		
	implications in biology			
Lecture 42	Review Class	1		
EDIAL EXCADING				

FINAL EXAMINATION

ASSESSMENT STRATEGY

		CO	Blooms Taxonomy	
Components	Components G			Brooms Taxonomy
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO2, CO4	C2, C3
	Class Participation	5%	CO3	Cl
	Mid term	15%	CO1, CO2, CO3	C1, C2, C3
			CO 1	C2
Final Exam		60%	CO 2	C3
rinai exam		0076	CO 3	C1
			CO 4	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Physical Chemistry P. W. Atkins; Oxford University Press.
- 2. Essentials of Physical Chemistry- B.S. Bahl & G.D. Tuli; S. Chand and Company Ltd.

REFERENCE BOOKS

- 1. Lehninger Principles of Biochemistry- 4th Edition, by Albert L. Lehninger, David L. Nelson, and Michael M. Cox.
- 2. Harper's Illustrated Biochemistry- 28th Edition by Robert K. Murray, David A Bender, Kathleen M. Botham, Peter J. Kennelly, Victor W. Rodwell, P. Anthony Weil.
- 3. Morrison and Boyd, Organic Chemistry, 6th Edition, Prentice Hall, 1998

REFERENCE SITE

5.1.2.5 **LANG 102 Communicative English I**

COURSE INFORMATION						
Course Code	: LANG – 102	Lecture Contact Hours	: 3.00			
Course Title	: Communicative English I	Credit Hours	: 1.50			
PRE-REQUISITE						

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course has mainly been designed to improve speaking and oral communication skills of the students. The course includes instructions and experience in speech preparation and speech delivery within various real life situations, formal and informal. Emphasis will be given on various speeches, such as informative, persuasive and interactive. This course will help students progress in real life both personally and professionally. Students will be able to understand class lectures and can comfortably continue the Engineering course, and also to compete in the global job market and increase career skills.

OBJECTIVE

- 1. To develop the four basics skills of English language, i.e. listening, speaking, reading and writing.
- To develop students' interpersonal skills engaging them in various group interactions and activities.
- To improve students' pronunciation in order to improve their level of comprehensibility in both speaking and listening.
- 4. To give the students exposure to different types of texts in English in order to make them informed using different techniques of reading.
- 5. To gain an understanding of the underlying writing well-organized paragraphs and also to teach how to edit and revise their own as well as peer's writing.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Listen, understand, and learn the techniques of note taking and answering questions.	C1	1	-	-	-	T, ASG, Pr
CO2	Understand and speak English quickly and smartly using the techniques learnt in the class.	C2	1	-	-	-	T, ASG, Pr
CO3	Communicate effectively within the shortest possible time to present their ideas and opinions.	C2	10	-	-	-	T, ASG, Pr
CO4	Develop competency in oral, written communication/presentation	C4	10	-	-	-	T, ASG, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q - Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

•		*	,		
C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Speaking: Introduction to Language: Introducing basic skills of language.

English for Science and Technology. Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd.

Name, family background, education, experience, any special quality/interest, likings/disliking, etc. Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions.

Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints. Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event. Practicing storytelling, Narrating personal experiences/Anecdotes. Telephone conversations (role play in group or pair). Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation).

Listening: Listening and understanding: Listening, note taking and answering questions;

Students will listen to recorded text, note down important information and later on will answer to some questions. Difference between different accents: British and American accents;

Documentaries from BBC and CNN will be shown and students will try to understand. Listening to short conversations between two persons/more than two.

Reading: Reading techniques: scanning, skimming, predicting, inference; Reading Techniques: analysis, summarizing and interpretation of texts.

Writing: Introductory discussion on writing, prewriting, drafting; Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event; Paragraph writing, Compare-contrast and cause- effect paragraph.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Listen, understand, and learn the techniques of note taking and answering questions.	3											
CO2	Understand and speak English quickly and smartly using the techniques learnt in the class.	3											
СОЗ	Communicate effectively within the shortest possible time to present their ideas and opinions.										3		
CO4	Develop competency in oral, written communication/presentation										3		

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

	ssion, Co-operative and collaborative method, Problem based method					
COURSE SCHEDULE						
Week	Topic	Assessment				
1						
Lecture 1	Introduction to Language: Introducing basic skills of language. English for Science and Technology					
Lecture 2	Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd. Name, family background, education, experience, any special quality/interest, likings/disliking, etc.	Test, Assignment				
Lecture 3	1 1 1					
2						
Lecture 4	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions					
Lecture 5	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions					
Lecture 6	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions					
3						
Lecture 7	Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints					
Lecture 8	Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints					
Lecture 9	Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints					
4						
Lecture 10	Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures /					

Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures /

Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures /

Narrating

Narrating

Narrating

personal

personal

personal

storytelling,

storytelling,

storytelling,

any incident / event

any incident / event

any incident / event

experiences/Anecdotes

experiences/Anecdotes

experiences/Anecdotes

Practicing

Practicing

Practicing

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Lecture 15

		ea sy siner Bepariments
6		
Lecture 16	Telephone conversations (role play in group or pair)	
	Situational talks / dialogues: Practicing different	
	professional conversation (role play of doctor-patient	
	conversation, teacher –student conversation)	
Lecture 17	Telephone conversations (role play in group or pair)	
	Situational talks / dialogues: Practicing different	
	professional conversation (role play of doctor-patient	
	conversation, teacher –student conversation)	
Lecture 18	Telephone conversations (role play in group or pair)	
	Situational talks / dialogues: Practicing different	
	professional conversation (role play of doctor-patient	
	conversation, teacher –student conversation)	
7		
Lecture 19	Listening and understanding: Listening, note taking and	
	answering questions;	
	Students will listen to recorded text, note down important	
	information and later on will answer to some questions	
Lecture 20	Listening and understanding: Listening, note taking and	
	answering questions;	
	Students will listen to recorded text, note down important	
	information and later on will answer to some questions	
Lecture 21	Listening and understanding: Listening, note taking and	
	answering questions;	
	Students will listen to recorded text, note down important	
	information and later on will answer to some questions	
	Midterm Break	
8		
Lecture 22	Difference between different accents: British and American	
	accents;	
	Documentaries from BBC and CNN will be shown and	
	students will try to understand	
Lecture 23	Difference between different accents: British and American	
	accents;	Test, Assignment,
	Documentaries from BBC and CNN will be shown and	Presentation
	students will try to understand	
Lecture 24	Difference between different accents: British and American	
	accents;	
	Documentaries from BBC and CNN will be shown and	
	students will try to understand	
9		
Lecture 25	Listening to short conversations between two persons/more	
	than two	
Lecture 26	Listening to short conversations between two persons/more	
	than two	
Lecture 27	Listening to short conversations between two persons/more	
	than two	
10		
Lecture 28	Reading techniques: scanning, skimming, predicting,	
	inference;	
	,	

	Course Offered by Other Departments
Lecture 29	Reading techniques: scanning, skimming, predicting,
	inference;
Lecture 30	Reading techniques: scanning, skimming, predicting,
	inference
11	
Lecture 31	Reading Techniques: analysis, summarizing and
	interpretation of texts
Lecture 32	Reading Techniques: analysis, summarizing and
	interpretation of texts
Lecture 33	Reading Techniques: analysis, summarizing and
	interpretation of texts
12	
Lecture 34	Introductory discussion on writing, prewriting, drafting;
Lecture 35	Introductory discussion on writing, prewriting, drafting;
Lecture 36	Introductory discussion on writing, prewriting, drafting
13	
Lecture 37	Topic sentence, paragraph development, paragraph
	structure, describing a person/scene/picture, narrating an
	event
Lecture 38	Topic sentence, paragraph development, paragraph
	structure, describing a person/scene/picture, narrating an
	event
Lecture 39	Topic sentence, paragraph development, paragraph
	structure, describing a person/scene/picture, narrating an
	event
14	
Lecture 40	Paragraph writing, Compare-contrast and cause- effect
	paragraph
Lecture 41	Paragraph writing, Compare-contrast and cause- effect
	paragraph
Lecture 42	Paragraph writing, Compare-contrast and cause- effect
	paragraph
Ų	1 0 1

ASSESSMENT STRATEGY

Components Grading		Grading	CO	Blooms Taxonomy		
	Listening Test	15%	CO1, CO2, CO3, CO4	C1, C2, C4		
Continuous Assessment	Descriptive writing	25%	CO1, CO2, CO3, CO4	C1, C2, C4		
(40%)	Public Speaking	30%	CO1, CO2, CO3, CO4	C1, C2, C4		
	Presentation	30%	CO1, CO2, CO3, CO4	C1, C2, C4		
Total Marks 100%		100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication
- 2. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication

REFERENCE BOOKS

- Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 2. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation)
- 3. From Paragraph to Essay Maurice Imhoof and Herman Hudson
- 4. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 5. Speak like Churchill stand like Lincoln James C. Humes
- 6. Cambridge IELTS Practice Book
- 7. Selected Sample Reports and Selected Research Articles

REFERENCE SITE

-

5.1.2.6 GEBS 101 Bangladesh Studies

COURSE INFORMATION							
Course Code	: GEBS 101	Lecture Contact Hours	: 2.00				
Course Title	: Bangladesh Studies	Credit Hours	: 2.00				
PRE-REQUISI	TE						
-	-						
CURRICULUM STRUCTURE							

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course has been designed for undergraduate engineering students to help them learn the rich history of Bangladesh, and to provide them with basic knowledge of historical events which eventually led to the formation of Bangladesh and constitution of Bangladesh, current trends in economic development, legislation, citizen charter, cultural aspects which will make them responsible citizen.

OBJECTIVE

- 1. To equip students with factual knowledge that will enable them to learn the history of Bangladesh.
- 2. To trace the historical roots of Bangladesh as an independent state focusing on the social, cultural and economic developments that have taken place since its independence.
- 3. To promote an understanding of the development of Bangladesh and its culture.
- 4. To create an awareness among the students about the Geography, Economy, Politics and Culture of Bangladesh.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessm ent Methods
CO1	Be able to identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and variety of cultural identities of Bangladesh.	C1	6	-	-	-	T, MID, F
CO2	Be able to explain the economy and patterns of economic changes through qualitative and quantitative analysis.	C2	6	-	-	-	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 – Create
			C+ - Allaivzc		

COURSE CONTENT

Bangladesh Geography: Location, Area, Boundary, Physiography, River system, Forest and Climate, Demography of Bangladesh, Maritime zones.

History: Overview of the ancient Bengal; anthropological identity of the Bengali race; main trends in the history of medieval Bengal; Bengal under the East India Company; religious and social reform movements; nationalist movements, division of the Indian sub-continent; language movement 1948-1952; education movement of 1962; six-point movement of 1966; mass uprising of 1969; war of independence and emergence of Bangladesh in 1971, Constitution of Bangladesh, Pre and post liberation development in the field of engineering and technology, Bangladesh's contribution to world peace and its security, engineering developments in Bangladesh (Kaptai Dam, Padma bridge, power plants, Karnaphuli River Tunnel etc) and its impact on socio-economic aspect.

Environment, Economy and Culture

Land, Characteristics of tropical monsoon climate, Forests and biomass, Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of Bangladesh, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh, Artand Literature, Main traditional cultural events, Vision-2021, Digitalization, Tourism and Natural Resources, Bangladesh and International Relations.

SKILL MAPPING

					PRO	GRA]	JO M	JTCO	MES	(PO)			
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to identify specific stages of												
	Bangladesh's political history, through												
CO1	the ancient, medieval, colonial and post-						3						
	colonial periods and variety of cultural												
	identities of Bangladesh.												
	Be able to explain the economy and												
CO2	patterns of economic changes through						3						
	qualitative and quantitative analysis.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEL CITING	T D A DAILBIO	CORD A DECAY
TEACHING	LEARNING	STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	28
Revision of the previous and (or) subsequent lecture at home	14
Preparation for final examination	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	89

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Weeks	Topics	Assessment
1		
Lecture 1	Definition, nature and scope of sociology	
Lecture 2	Sociological imagination	
2		
Lecture 3	Perspectives of sociology	
Lecture 4	Orientation of sociological theories	CT – 1 and Midterm
3		Final
Lecture 5	Social research and its process	
Lecture 6	Research designs and techniques.	
4		
Lecture 7	Introducing culture and its variations	
Lecture 8	Civilization	
5		
Lecture 9	Defining family and its changes	
Lecture 10	Socialization process and development of self	
6		
Lecture 11	Introducing globalization and its impact on human life	Midterm, Final
Lecture 12	Factors responsible to globalization	
7		
Lecture 13	Media and its impact in modern society	
Lecture 14	Addressing social problems of Bangladesh	
	MIDTERM	
8		
Lecture 15	Introducing social groups and organizations	
Lecture 16	Introducing bureaucracy and good governance	
9		
Lecture 17	Introducing social stratifications and social inequality	CT – 2, FINAL
Lecture 18	Poverty and its types and dimensions	
10		
Lecture 19	Industrial revolution and aftermath	
Lecture 20	Urbanization and city development	
11		
Lecture 21	Capitalism: features and influence	
Lecture 22	Socialism: features and influence	
12		
Lecture 23	Environment and human activities	CT – 3, FINAL
Lecture 24	Climate change and global risk	
13		
Lecture 25	Population of Bangladesh: problem or prospect	
Lecture 26	Crime and deviance: a brief analysis	
14	•	
Lecture 27	Review 1	_
Lecture 28	Review 2	

C			СО	Blooms Taxonomy
Comp	onents	Grading		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2	C1, C2
(40%)	Class Participation	5%	CO2	C2
	Mid term	15%	CO1	C1
Final	Even	60%	CO 1	C1
Fillai	Final Exam 6		CO 2	C2
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Bangladesh Studies: Md. Shamsul Kabir Khan and Daulatunnahar Khanam
- 2. The Constitution of the People's Republic of Bangladesh

REFERENCE BOOKS

- 1. Discovery of Bangladesh: Akbar Ali Khan
- 2. History of Bangladesh, Vols, 1-3: Sirajul Islam
- 3. History of Modern Bengal, Vol, 1:R C Majumdar
- 4. Dynastic History of Bengal: Dr. Abdul MuminChowdhury
- 5. A History of Bangladesh: William Van Schendel
- 6. Geography of Bangladesh: HarunEr Rashid
- 7. Banglapedia: National Encyclopedia of Bangladesh, Vols, 1-10: Sirajul Islam
- 8. History of Bengal: (Mughal Period 1526-1765): R. A. Chandra
- 9. Land of Two Rivers: NiteshSengupta
- 10. A History of Bangladesh: Cambridge University Press
- 11. Bengali Nationalism and the Emergence of Bangladesh: A.F Salahuddin Ahmed
- 12. Language Movement and The Making of Bangladesh: Safar Ali Akanda

REFERENCE SITE

5.1.3 Level-2, Spring

5.1.3.1 MATH 205 Differential Equation, Laplace transform and Fourier Transform

COURSE INFORMATION								
Course Code	: Math 205							
Course Title	: Differential Equations,	Lecture Contact Hours	: 3.00					
	Laplace Transform and	Credit Hours	: 3.00					
	Fourier Transform							

PRE-REQUISITE

_

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To teach the students the basic Concepts, Principles and operations of Differential Equation, Laplace Transform and Application of Fourier Analysis in Engineering problem. The aim of this course is to develop the analytical and practical capability of Differential equation, Laplace Transform and Fourier Analysis.

OBJECTIVE

- 1. To provide a physical interpretation of the Differential Equations and Laplace Transform.
- 2. Able to explain the characteristics of Ordinary Differential Equations and Laplace Transform.
- 3. To apply Laplace and Fourier Transform in solving complex problems.
- 4. To use differential operations for simplification of complexengineering expressions

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's	PO	СР	CA	KP	Assessment
110.	Course outcome	Taxonomy			011	121	Methods
	Identify differential equations of various						T, F
CO1	types and recognize the basic properties of	C1, C2	1	1		1, 3	
	Laplace and Fourier transform.						
	Interpret the classifications of differential						T, Mid Term
CO2	equations and estimate the technique of	C2, C4	1	1		3	Exam, F
002	Laplace transform and Fourier transform of	C2, C4	1	1			
	some elementary function.						
	Solve different types of differential						Mid Term
	equations and apply Laplace transform to						Exam, F, ASG
CO2	Ordinary Differential Equation and Fourier	C4		1.0		3	
CO3	as well as Inverse Fourier transform to	rier transform to		1,3	1,3		
	make use of boundary value problems in						
	Engineering fields						

 $(CP-\ Complex\ Problems,\ CA-Complex\ Activities,\ KP-Knowledge\ Profile, T-Test;\ PR-Project;\ Q-Quiz;\ ASG-Assignment;\ Pr-Presentation;\ R-Report;\ F-Final\ Exam)$

C1 - Remember C2 - Understand C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
--	--------------	---------------	-------------

COURSE CONTENT

Differential Equations (DE): Introduction to DE, Formulation of DE, Degree and order of Ordinary Differential Equation(ODE), Solution of first order DE by various methods, Solution of first order but higher degree DE, Solution of general LEs of second and higher order, Solution of Euler's homogeneous linear DEs, Solution of DEs by methods based on factorization, Application of ODE, Frobenious methods, Bessel's functions, Legendre's polynomial, Power series solution of DE and their application, Integral form of DE and its application to engineering problem, Formation of partial differential equations, Linear and Non-linear first order Partial Differential Equation(PDE), Standard form Linear Equations (LE) of higher order, Linear PDE with constant coefficients. Equation of second order with variable coefficients, wave equation, particular solutions with boundary and initial condition, Integral surface passing through given curve, Second order PDE and classification to canonical solution, Applications of PDE.

Laplace Transform (LT): Definition and properties of Laplace transform, Sufficient conditions for existence of Laplace transforms, Laplace transform of some basic functions, LT of derivatives, Unit step function, Periodic function, Some special theorems on LT, Inverse Laplace transform, Partial fraction, Heaviside expansion formula, Convolution theorem, Evaluation of improper integral, Solution of Differential Equations by LT, Application of LT.

Fourier Transform: Real and Complex form of Fourier Series, Definition and expansion of a function of x in a Fourier Series, Physical application of Fourier Series, Finite Fourier Transform, Fourier Integral, Inverse Fourier transform, Fourier transform and their uses in solving boundary value problems, Diffusion, wave, Laplace Equation

SKILL MAPPING

No.	Course Outcome		PROGRAM OUTCOMES (PO)										
	0000	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Identify differential equations of various types and recognize the basic properties of Laplace and Fourier transform.	3											
CO2	Interpret the classifications of differential equations and estimate the technique of Laplace transform and Fourier transform of some elementary function.	3											
СОЗ	Solve different types of differential equations and apply Laplace transform to DE and Fourier and inverse Fourier transform to make use of boundary value problems in Engineering fields.	3											

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	

42
21
21
2
3
131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Differential Equations	
Lecture 1	Introduction to DE, Formulation of DE, Degree and order of	
	ODE	
Lecture 2	Solution of first order DE by various methods	
Lecture 3	Solution of first order DE by various methods	CT – 1, Final
2		
Lecture 4	Solution of first order DE by various methods,	
Lecture 5	Solution of first order but higher degree DE, solution of general	
	LEs of second and higher order	
Lecture 6	Solution of Euler's homogeneous linear DEs	
3		
Lecture 7	Solution of DEs by methods based on factorization,	
Lecture 8	Frobenious methods – concept	
Lecture 9	Frobenious methods – problems	
4		
Lecture 10	Solution of differential equations of the higher order when	
	dependent and independent variables are absent	
Lecture 11	Bessel's functions, Legendre's polynomial, Power series solution	
	of DE and their application,	
Lecture 12	Integral form of DE and its application to engineering problem,	
5		3.61.14 EV 1
Lecture 13	Formation of partial differential equations, linear and non linear	Midterm, Final
	first order PDE,	
Lecture 14	Standard form LEs of higher order	
Lecture 15	Integral surface passing through given curve	
6		
Lecture 16	Non-linear PDE of order one, Charpit's method.	
Lecture 17	Linear PDE with constant coefficients	
Lecture 18	Linear PDE with constant coefficients	
7		

Course Offered by Other Departments

Lecture 19	Equation of second order with variable coefficients, Second order	y Other Departments
Lecture 19	PDE and classification to canonical solution	
Lecture 20	wave equation, particular solutions with boundary and initial	_
Lecture 20	condition	
Lecture 21		-
Lecture 21	Application of ODE, Applications of PDE	
	Midterm Break	T
8	Laplace Transform	_
Lecture 22	Definition and properties of Laplace transform	
Lecture 23	Sufficient conditions for existence of Laplace transforms	
Lecture 24	Laplace transform of some basic functions, LT of derivatives	
9		
Lecture 25	Unit step function, Periodic function	
Lecture 26	Some special theorems on LT	CT – 2, Final
Lecture 27	Inverse Laplace transform	1
10		1
Lecture 28	Partial fraction,	1
Lecture 29	Heaviside expansion formula	1
Lecture 30	Convolution theorem	1
11		
Lecture 31	Evaluation of improper integral,	1
Lecture 32	Solution of Differential Equations by LT	1
Lecture 33	Application of LT	1
12	Fourier Transform	1
Lecture 34	Real and Complex form of Fourier Series	1
Lecture 35	Definition and expansion of a function of x in a Fourier Series	1
Lecture 36	Physical application of Fourier Series	CT – 3, FINAL
13		
Lecture 37	Finite Fourier Transform	-
Lecture 38	Fourier Integral	1
Lecture 39	Inverse fourier transform	1
14		
Lecture 40	Fourier transform and their uses in solving boundary value	FINAL
	problems	
Lecture 41	Fourier transform and their uses in solving boundary value	1
	problems	
Lecture 42	Diffusion, wave, Laplace Equation	1
ASSESSMENT		<u> </u>

Comp	Components		СО	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2	C1, C2
(40%)	Class Participation	5%	CO3	C4
	Mid term	15%	CO2, CO3	C2, C4
			CO 1	C1, C2
Final	Exam	60%	CO 2	C2, C4
			CO 3	C4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Ordinary and Partial Differential Equations by M.D.RAISINGHANIA.
- 2. Differential Equations by Shepley L. Ross.

REFERENCE BOOKS

- 1. Differential Equations by Glen R. Hall.
- 2. Theory and problems of Laplace Transform, Schaum's outlines series, Murray R. Spiegel.

REFERENCE SITE

__

5.1.3.2 GELM 271 Leadership and Management

COURSE INFO	RMATION				
Course Code	: GELM 271	Lecture Contact Hours	: 2.00		
Course Title	: Leadership and Management	Credit Hours	: 2.00		
DDE DECHISITE					

PRE-REQUISITE

_

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course is designed to make students understand the overlapping connection between engineering and management in an organization through the study of varied management practices and leadership traits as an engineer.

OBJECTIVE

- 1. To introduce different management functions and approaches.
- 2. To expose students to different views and styles of leadership
- 3. To understand how an organization functions collaboratively with managers and engineers.
- 4. To understand various personality traits and its impact on leadership and management.
- 5. To solve real-world management problems as an engineer.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to familiarize with the fundamental concepts of leadership and management skills	C1	9,10	-	-	1	T, R, F

							00	-		
CO2		understand the role n of a leader in achie nal goals		C	2	9,10	-	-	1	T, ASG, R, F
СОЗ	of leadersh	understand the contrib nip traits and manage ision making and solving as	ement	C	2	9,10	-	-	1	T, ASG, R, F
1 `	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)							Q – Quiz; ASG		
								C6 – Create		

COURSE CONTENT

Introduction to Leadership and Management: Definition of leadership and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history.

Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg's managerial roles; Henri Fayol's management principles; strategic management.

Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory; Leadership styles; leadership trait theory; managerial grid; contemporary leadership; conflicts negotiation; leadership issues in 21st century; cross cultural leadership; engineer as a leader and some simple case discussions on leadership (positive and toxic leadership) in the class (Interactive Learning).

Organizational Management: Organization; departmentalization; chain of command; unity of command; cross functional area; authority; centralization and decentralization; traditional & contemporary organization; matrix project structure; learning structure; organizing collaboration.

Planning and goal setting: Foundation of planning; goals of plan; types of goal; types of goal & plan; goal setting; MBO; well written goal.

Control: Controlling process; controlling for organizational performance; types of control: (feed-forward, feedback & concurrent); balanced scorecard; contemporary issues in control; workplace concern & workplace violence.

Change and Innovation: Change and innovation; internal and external for change; changing process; creativity vs innovation.

Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.

Personality: Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality).

Perception and Individual Decision Making: Factors influencing perception; attribution theory; errors/biases in attribution; Factors of individual decision making; rational decision making; bounded rationality; satisfice; common errors in decision making; creativity in decision making.

Understanding Work Team: Work group; work team; problem solving team; self-managed work team; cross functional team; virtual team; team effectiveness; team challenges.

HR Management: Process of Human Resource Planning; forecasting demand for labor; staffing; internal supply of labor; performance appraisal.

Operations Management: Project managing basics; goals and boundary of project; WBS; scheduling a project; Demand and supply forecasting; inventory control.

Information Technology and Management: Management Information System (MIS); Enterprise Resource Planning (ERP) - For introductory knowledge.

SKILL MAPPING

No. Course Learning Outcome					PR	OG]	RAN	IO N	UTC	OM	ES (PO)	
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to familiarize with the fundamental concepts of leadership and management skills									3	3		
CO2	Be able to understand the role and contribution of a leader in achieving organizational goals									3	3		
CO3	Be able to understand the contribution of leadership traits and management skills in decision making and solving real life problems									3	3		

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	28
Revision of the previous and (or) subsequent lecture at home	14
Preparation for final examination	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	89

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Weeks	Topics	Assessment
Lecture 1	Introduction to Leadership and Management: Definition of leadership and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history.	
Lecture 2	Management Fundamentals:Definition of management & manager; levels of management;management functions and skills; Mintzberg's managerial roles; Henri Fayol's management principles; strategic management.	CT – 1 and Midterm, Final
2		
Lecture 3	Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory	

	Course Offered by	Siner Departments
Lecture 4	Leadership & Motivation: Motivation, Maslow's hierarchy needs;	
	theory of X & Y; motivators and hygiene factors; goal setting	
	theory; reinforcement theory; equity theory; expectancy theory	
3		
Lecture 5	Leadership: Leadership styles; leadership trait theory; managerial	
Lecture 5	grid; contemporary leadership; conflicts negotiation; leadership	
	issues in 21st century; cross cultural leadership; engineer as a leader	
	and some simple case discussions on leadership (positive and toxic	
	leadership) in the class (Interactive Learning).	
Lecture 6	Leadership: Leadership styles; leadership trait theory; managerial	
	grid; contemporary leadership; conflicts negotiation; leadership	
	issues in 21st century; cross cultural leadership; engineer as a leader	
	and some simple case discussions on leadership (positive and toxic	
	leadership) in the class (Interactive Learning).	
1	readership) in the class (interactive Learning).	
Lastura 7	Casa Study. In Engineering Count I and	
Lecture 7	Case Study – I : Engineer as Great Leaders	
Lecture 8	Case Study – I : Engineer as Great Leaders	
5		
Lecture 9	Organizational Management: Organization; departmentalization;	
	chain of command; unity of command; cross functional area;	
	authority; centralization and decentralization; traditional &	
	contemporary organization; matrix project structure; learning	
T . 10	structure; organizing collaboration.	
Lecture 10	Planning and goal setting: Foundation of planning; goals of plan;	
	types of goal; types of goal & plan; goal setting; MBO; well written	
	goal.	
6		
Lecture 11	Control: Controlling process; controlling for organizational	
	performance; types of control: (feed-forward, feedback &	Midterm, Final
	concurrent); balanced scorecard; contemporary issues in control;	mai in
T , 10	workplace concern & workplace violence.	
Lecture 12		
	Change and Innovation: Change and innovation; internal and	
	Change and Innovation: Change and innovation; internal and external for change; changing process; creativity vs innovation.	
7		
7 Lecture 13		
	external for change; changing process; creativity vs innovation. Case Study – II : Planning and Goal Setting; A Managerial	
	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive	
Lecture 13	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class)	
	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and	
Lecture 13	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job	
Lecture 13	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.	
Lecture 13 Lecture 14	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job	
Lecture 13 Lecture 14	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. MIDTERM	
Lecture 13 Lecture 14	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.	
Lecture 13 Lecture 14	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. MIDTERM	
Lecture 13 Lecture 14	Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. MIDTERM Personality:Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model;	
Lecture 13 Lecture 14	Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. MIDTERM Personality: Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism,	CT – 2, FINAL
Lecture 14 Lecture 14 8 Lecture 15	external for change; changing process; creativity vs innovation. Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. MIDTERM Personality:Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality).	CT – 2, FINAL
Lecture 14 Lecture 14	Case Study – II: Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class) Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction. MIDTERM Personality: Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism,	CT – 2, FINAL

Lecture 17	Perception and Individual Decision Making: Factors of individual	
	decision making; rational decision making; bounded rationality;	
	satisfice; common errors in decision making; creativity in decision	
	making.	
Lecture 18	Case Study – III: A Case on Decision Making – Involves both	
	leadership and managerial skills (Interactive Discussion in the	
	Class)	
10		
Lecture 19	Understanding Work Team: Work group; work team; problem	
	solving team; self-managed work team; cross functional team;	
	virtual team; team effectiveness; team challenges.	
Lecture 20	HR Management: Process of Human Resource Planning; forecasting	
	demand for labor; staffing.	
11		
Lecture 21	HR Management: Internal supply of labor; performance appraisal.	
Lecture 22	Operations Management:Project managing basics; goals and	
	boundary of project; WBS; scheduling a project.	
12		
Lecture 23	Operations Management: Demand and supply forecasting;	
	inventory control.	
Lecture 24	Exercise – Use of Microsoft Project (MSP) for scheduling a	
	project at student level	
13		CT – 3, FINAL
Lecture 25	Case Study – IV: A case that covers all relevant theories taught	C1 - 3, FINAL
	throughout the course and involves both leadership and	
	management issues, e.g., Columbia's Final Mission. (This may be	
	given as group assignment followed by in class short	
	presentations/discussions)	
Lecture 26	Case Study – IV: A case that covers all relevant theories taught	
	throughout the course and involves both leadership and	
	management issues, e.g., Columbia's Final Mission. (This may be	
	given as group assignment followed by in class short	
	given as group assignment followed by in class short presentations/discussions)	
14	presentations/discussions)	
14 Lecture 27	presentations/discussions) Information Technology and Management: Management	
	Information Technology and Management: Management Information System (MIS); Enterprise Resource Planning (ERP) -	_
	presentations/discussions) Information Technology and Management: Management	-

Comp	onents	Grading	СО	Blooms Taxonomy
Continuous	Continuous Assessment Class	20%	CO1, CO2	C1, C2, P1
(40%)	Class		CO1, CO2	C1, C2, P1, P2, A1
	Mid term	15%	CO1, CO2, CO3	C1, C2, P1, P2, A1, A2
			CO 1	C1, C2, P1, P2, A1, A2
Final	Exam	60%	CO 2	C1, C2, P1, A1
			CO 3	C1, C2, P1, P2, A1, A2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Engineering Management (Revised Edition) A.K. Gupta
- 2. Industrial Engineering and Production Management Martand T. Telsang

REFERENCE BOOKS

- 3. Leadership in Organizations Gary Yukl
- 4. Developing Management Skills David A. Whetten and Kim S. Cameron

REFERENCE SITE

__

5.1.3.3 LANG 202 Communicative English II

COURSE INFO	ORMATION		
Course Code	: LANG 202	Lecture Contact Hours	: 3.00
Course Title	: Communicative English - II	Credit Hours	: 1.50
PRE-REQUISI	TE		
LANG 102: Cor	nmunicative English Sessional 1		

LANG 102: Communicative English Sessional –1

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes especially in reading and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to different types of texts to develop efficient reading skill. Reading will also involve activities and discussions leading to effective writing. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Emphasis is particularly put on the various forms of essay writing such as descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, students are expected to be able to communicate at various situations, participate in group activities and prepare formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. In addition, the course emphasizes on providing constructive feedback on students' oral performances.

OBJECTIVE

- 1. To develop English language skills to communicate effectively and professionally.
- 2. To strengthen students' presentation skills.
- 3. To develop competency in academic reading and writing.

COUI	RSE OUTCOMES & GENERIC SKILLS						
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the techniques of academic reading and become acquainted with technical vocabularies	C1	1	-	-	-	T, ASG, Pr
CO2	Be able to understand the techniques of effective academic writing such as research article/report writing	C2	1	-	-	-	T, ASG, Pr
CO3	Be able to communicate effectively within the shortest possible time to present any report and research work	C2	10	-	-	-	T, ASG, Pr
CO4	Be able to analyze any problem critically, analyze and interpret data and synthesize information to provide valid conclusions	C4	10	-	-	-	T, ASG, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Speaking: Reading Comprehension: Practice using different techniques; Academic reading: comprehension from departmental or subject related passages; Vocabulary for Engineers (some common Engineering terms for both general and dept specific); Reading subject specific text to develop vocabulary.

Writing: Writing semi-formal, Formal/official letters, Official E-mail; Applying for a job: Writing Cover Letter and Curriculum Vitae; Statement of Purpose (SOP) writing, Proposal Writing: writing steps, principles and techniques, outlining, revising, editing, proofreading; Report writing, article writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing; Analyzing and describing graphs or charts; Practicing analytical and argumentative writing.

Speaking: Public Speaking: Basic elements and qualities of a good public speaker; Set Speech: How to get ready for any speech. Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. Selected books/Selected stories for presentation.

Listening: Listening to long lecture on some topics, Listening and understanding speeches/lectures of different accent.

SKILL MAPPING

No.	Course Learning Outcome	1 2 3 4 5 6 7 8 9 10 11 Chinques of acquainted 3 Chinques of											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to understand the techniques of												
CO1	academic reading and become acquainted	3											
	with technical vocabularies												
	Be able to understand the techniques of												
CO2	effective academic writing such as	3											
	research article/report writing												
	Be able to communicate effectively within												
CO3	the shortest possible time to present any										3		
	report and research work												
	Be able to analyze any problem critically,												
CO4	analyze and interpret data and synthesize										3		
	information to provide valid conclusions												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities Engagement (hours)

Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Topic	Assessment
1		
Lecture 1	Reading Comprehension: Practice using different techniques	
Lecture 2	Reading Comprehension: Practice using different techniques	
Lecture 3	Reading Comprehension: Practice using different techniques	
2		
Lecture 4	Academic reading: comprehension from departmental or	
	subject related passages	
Lecture 5	Academic reading: comprehension from departmental or	
	subject related passages	Test, Assignment,
Lecture 6	Academic reading: comprehension from departmental or	Presentation
	subject related passages	
3		
Lecture 7	Vocabulary for Engineers (some common Engineering terms	
	for both general and dept specific)	
	Reading subject specific text to develop vocabulary	
Lecture 8	Vocabulary for Engineers (some common Engineering terms	
	for both general and dept specific)	
	Reading subject specific text to develop vocabulary	
Lecture 9	Vocabulary for Engineers (some common Engineering terms	
	for both general and dept specific)	
	Reading subject specific text to develop vocabulary	
4		
Lecture 10	Writing semi-formal, Formal/official letters, Official E-mail	
Lecture 11	Writing semi-formal, Formal/official letters, Official E-mail	
Lecture 12	Writing semi-formal, Formal/official letters, Official E-mail	
5		
Lecture 13	Applying for a job: Writing Cover Letter and Curriculum Vitae	
Lecture 14	Applying for a job: Writing Cover Letter and Curriculum Vitae	
Lecture 15	Applying for a job: Writing Cover Letter and Curriculum Vitae	
6		

		y Otner Departments
Lecture 16	Statement of Purpose (SOP) writing: writing steps, principles	
	and techniques, outlining, revising, editing, proofreading;	
Lecture 17	Proposal writing: writing steps, principles and techniques,	
	outlining, revising, editing, proofreading;	
Lecture 18	Proposal writing: writing steps, principles and techniques,	
	outlining, revising, editing, proofreading;	
7		
Lecture 19	Report writing: comparison-contrast and cause – effect,	
	argumentative and opinion expression, assignment writing;	
Lecture 20	Report writing: comparison-contrast and cause – effect,	
	argumentative and opinion expression, assignment writing;	
Lecture 21	Report writing: comparison-contrast and cause – effect,	
	argumentative and opinion expression, assignment writing;	
8		
Lecture 22	Analyzing and describing graphs or charts	
Lecture 23	Analyzing and describing graphs or charts	
Lecture 24	Analyzing and describing graphs or charts	
9	,	
Lecture 25	Practicing analytical and argumentative writing	
Lecture 26	Practicing analytical and argumentative writing	Test, Assignment,
Lecture 27	Practicing analytical and argumentative writing	Presentation
	Fractioning analytical and argumentative writing	
Lecture 28	Dublic Consoling a Davis alaments and speliting of a good sublic	
Lecture 28	Public Speaking: Basic elements and qualities of a good public speaker	
Lecture 29	Public Speaking: Basic elements and qualities of a good public	
	speaker	
Lecture 30	Public Speaking: Basic elements and qualities of a good public	
	speaker	
11		
Lecture 31	Set Speech: How to get ready for any speech.	
Lecture 32	Set Speech: How to get ready for any speech.	
Lecture 33	Set Speech: How to get ready for any speech.	
12		
Lecture 34	Individual / Group presentation: How to be ready for	
	presentation, prepare script for good speech, preparing power	
	point slides, etc. Selected books/Selected stories for	
	presentation.	
Lecture 35	Individual / Group presentation: How to be ready for	
	presentation, prepare script for good speech, preparing power	
	point slides, etc. Selected books/Selected stories for	
	presentation.	
Lecture 36	Individual / Group presentation: How to be ready for	
	presentation, prepare script for good speech, preparing power	
	point slides, etc. Selected books/Selected stories for	
	presentation.	
13		
Lecture 37	Listening to long lecture on some topics	
Lecture 38	Listening to long lecture on some topics	
Lecture 39	Listening to long lecture on some topics	

14	
Lecture 40	Listening and understanding speeches/lectures of different
	accents
Lecture 41	Listening and understanding speeches/lectures of different
	accents
Lecture 42	Listening and understanding speeches/lectures of different
	accents

ASSESSMENT STRATEGY

	Components	Grading	СО	Blooms Taxonomy
	Testing vocabulary level	20%	CO1, CO2, CO3, CO4	C1, C2, C4
Assessment (122.0)	Argumentative/analytical writing	25%	CO1, CO2, CO3, CO4	C1, C2, C4
(40%)	Individual Presentation	25%	CO1, CO2, CO3, CO4	C1, C2, C4
	Group Presentation	30%	CO1, CO2, CO3, CO4	C1, C2, C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press
- 2. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation)

REFERENCE BOOKS

- 1. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication
- 2. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 3. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 4. Speak like Churchill stand like Lincoln James C. Humes
- 5. Cambridge IELTS Practice Book
- 6. Selected Sample Reports and Selected Research Articles

REFERENCE SITE

-

5.1.3.4 LANG 204 Bangla Language and Literature

COURSE INFO	ORMATION		
Course Code	: LANG 204	Lecture Contact Hours	: 3.00
Course Title	: Bangla Language and	Credit Hours	: 1.50
	Literature		
DDE DECLUSION			

PRE-REQUISITE

-

CURRICULUM STRUCTURE

-

SYNOPSIS/RATIONALE

বাংলা আমাদের মাতৃভাষা। বাংলা শুধু একটি ভাষাই নয়, বরং এর সাথে বাংলাভাষী মানুষদের সংস্কৃতি, ইতিহাস এবং স্বকীয়তা ওতপ্রোতভাবে জড়িত। এই ভাষা শেখার মাধ্যমে এ অঞ্চলের মানুষদের ঐতিহ্য, মূল্যবোধ এবং জীবনপ্রক্রিয়া সম্পর্কে সম্যক ধারণা লাভ করা যায়। সর্বোপরি 'বাংলা ভাষা ও সাহিত্য' বিষয়টি অধ্যয়নের মাধ্যমে স্লাতক (সম্মান) প্রোগ্রামের ছাত্রছাত্রীগণ এর তাত্ত্বিক বিষয়ে যেমন দক্ষতা অর্জন করবে তেমনি এই কোর্স হতে লব্ধ ধারণা তাদের জ্ঞানের পরিধি ও সংস্কৃতি সম্পর্কে ধারণা বৃদ্ধি এবং এর প্রায়োগিক কৌশলসমূহ আরও ভালোভাবে রপ্ত করতে সাহায্য করবে

OBJECTIVE

- ১. বাংলা ভাষা, ব্যাকরণ ও সাহিত্যের মৌলিক বিষয়সম্পর্কেধারণা প্রদান।
- ২. মাতৃভাষার শুদ্ধ উচ্চারণ শিক্ষা।
- পঠিত বিষয়ের ভাব অনুধাবন করা এবং তা প্রকাশে দক্ষ করে তোলা।
- বাংলা ভাষায় পেশাগত দাপ্তরিক পত্রালাপ (Official Correspondence) এবং সৃজনশীল রচনার জন্য প্রাতিষ্ঠানিক শিক্ষা প্রদান ।

প্রয়োগিক উদ্দেশ্য।

- ১. সূজনশীল রচনায় বাংলা ভাষার দক্ষ প্রয়োগ।
- ২. মাতৃভাষায় শুদ্ধ উচ্চারণে বক্তব্য প্রদানে দক্ষতা অর্জন।
- ৩. লিখিত ও মৌখিক প্রয়োগে ভাষার সৌকর্য রক্ষা করা।
- ৪. মাতৃভাষায় দাপ্তরিক পত্রালাপে দক্ষতা অর্জন।

<u>পাঠ্যসূচী</u>।

- ১. সাহিত্য (প্রবন্ধ, গল্প ও কবিতা) ৪০ নম্বর
- ২. ব্যাকরণ, ভাষা শিক্ষা ও বিরচন ৬০ নম্বর

(প্রবন্ধ, গল্প ও কবিতাসমূহ ঢাকা বিশ্ববিদ্যালয় এবং ইউজিসি'র সিলেবাস হতে সংগৃহীত)

নির্বাচিত প্রবন্ধ - ১৫ নম্বর

বাঙ্গালা ভাষা - বঙ্কিমচন্দ্র চট্টোপাধ্যায়

তৈল - হরপ্রসাদ শাস্ত্রী

<u>নির্বাচিত গল্প</u> – ১৫ নম্বর

পুঁইমাচা - বিভূতিভূষণ বন্দোপাধ্যায়

নয়নচারা - সৈয়দ ওয়ালীউল্লাহ

<u>নির্বাচিত কবিতা</u> – ১০ নম্বর

বিদ্রোহী - কাজী নজরুল ইসলাম বঙ্গভাষা - মাইকেল মধুসূদন দত্ত

ব্যাকরণ ও ভাষা শিক্ষা

- ২৫ নম্বর

- প্রমিত বাংলা বানানের নিয়য়।
- (২) অশুদ্ধি সংশোধন।
- (৩) বাগ্ধারা।
- (৪) প্রবাদ প্রবচন।
- (৫) এক কথায় প্রকাশ।
- (৬) প্রশাসনিক পরিভাষা।
- (৭) প্রায় সমোচ্চারিত ভিন্নার্থক শব্দ।
- (৮) বিভিন্ন শব্দের বিশিষ্টার্থে প্রয়োগ।

উচ্চারণবিধি - ০৫ নম্বর

বিরচন - ৩০ নম্বর

- ইংরেজি থেকে বাংলা অনুবাদ/অনুচ্ছেদ রচনা।
- (২) ভাব সম্প্রসারণ/সারাংশ/সারমর্ম।
- পত্র/প্রতিবেদন রচনা।
- (8) প্রবন্ধ রচনা।

<u>বিস্তারিত পাঠ্যসূচি।</u> মোট ক্রেডিট - ৩ (৪২পিরিয়ড):

ক্র/নং	কোড নং	পাঠ্য বিষয়	পিরিয়ড সংখ্যা	মন্তব্য
		সাহিত্য (২০ পিরিয়ড)		1
١٤	বাংলা:১-৪	প্রবন্ধ: বাঙ্গালা ভাষা	8	
રા	বাংলা:৫-৭	প্রবন্ধ: তৈল	٥	
૭ ۱	বাংলা:৮-১১	গল্প: পুঁইমাচা	8	
81	বাংলা:১২-১৪	গল্প: নয়নচারা	٥	
Œ١	বাংলা:১৫-১৮	কবিতা: বিদ্রোহী	•	
ঙ৷	বাংলা:১৯-২১	কবিতা: বঙ্গভাষা	٥	
	ব্যাকরণ, ভাষা শিক্ষা	ও মৌখিক প্রকাশ ক্ষমতার উন্নয়ন (১১ পিরিয়ড)	,
٩١	বাংলা:২২-২৪	প্রমিত বাংলা বানানের নিয়ম	ર	
ੈ।	বাংলা:২৫-২৬	অশুদ্ধি সংশোধন	ą.	
৯।	বাংলা:২৭	বাগ্ধারা	۵	
\$ 01	বাংলা:২৮	প্রবাদ প্রবচন	۵	
221	বাংলা: ২৯	এক কথায় প্রকাশ	>	
> 21	বাংলা: ৩০	প্রশাসনিক পরিভাষা	٥	
১৩।	বাংলা: ৩১	প্রায় সমুচ্চারিত ভিন্নার্থক শব্দ	٥	
781	বাংলা: ৩২	বিভিন্ন শব্দের বিশিষ্টার্থে প্রয়োগ	2	
3 &1	বাংলা:৩৩-৩৪	উচ্চারণ বিধি	2	
		বিরচন (০৫ পিরিয়ড)		
১ ৬।	বাংলা: ৩৫-৩৬	ইংরেজি থেকে বাংলা অনুবাদ/অনুচ্ছেদ রচনা	Ŋ	
3 91	বাংলা: ৩৭	ভাবসম্প্রসারণ/সারাংশ/সারমর্ম	2	
3 61	বাংলা: ৩৮	পত্র/প্রতিবেদন রচনা	۵	

		, , , , , , , , , , , , , , , , , , ,		•				
১৯।	বাংলা: ৩৯	প্রবন্ধ রচনা	۵					
পরীক্ষা (০৬ পিরিয়ড)								
२०।	বাংলা: ৪০-৪২	পরীক্ষা (২+৪)	હ					
		মোট পিরিয়ড =	8২					

প্রশিক্ষণের ক্ষেত্রে নিম্নলিখিত পদ্ধতি/উপায়সমূহ অনুসরণ করা হবে: পাঠদান কৌশল।

ক। বক্তৃতা।

দলগত আলোচনা। খ।

মাল্টিমিডিয়া প্রেজেন্টেশান। গ ৷

নোট/সহায়কসামগ্রী প্রদান। घ।

ল্যাংগুয়েজ ল্যাবে প্রশিক্ষণ। હ ા

স্পট/ক্লাস টেস্ট ইত্যাদি। চ।

মূল্যায়ন পদ্ধতি নিম্নুরূপ: মূল্যায়নপদ্ধতি।

ক্র. নং	বিষয়	নম্বর	মন্তব্য
١ ٢	১×মিড টার্ম পরীক্ষা	২০%	১ ঘণ্টা, ২০ নম্বর
३।	ক্লাস টেস্ট	٥٥%	৩টি (২টির নম্বর জমা দেয়া হবে, ৫%+৫%)
૭ I	অ্যাসাইনমেন্ট/ দলগত উপস্থাপনা/ ক্লাস পারফরমেন্স	30%	
8	উপস্থিতি	٥٥%	
& 1	সেমিস্টার ফাইনাল পরীক্ষা	¢0%	৩ ঘণ্টা, ১০০ নম্বর
	সর্বমোট	১ 00%	

REFERENCE BOOKS

সহায়ক গ্রন্থাবলি নিম্নুরূপ:

- ১. বাংলা ব্যাকরণ ড. শাহজাহান মুনীর, স্টুডেন্টস পাবলিকেশনস।
- ২. প্রবন্ধসংগ্রহ ঢাকা বিশ্ববিদ্যালয়।
- ৩. গল্পসংগ্রহ ঢাকা বিশ্ববিদ্যালয়।
- 8. কবিতাসংগ্রহ ঢাকা বিশ্ববিদ্যালয়।
- বাংলা বানান অভিধান বাংলা একাডেমি কর্তৃক প্রকাশিত।
 বাংলা উচ্চারণ অভিধান বাংলা একাডেমি কর্তৃক প্রকাশিত।
- ৭. প্রমিত বাংলা ব্যাকরণ ও নির্মিতি (তৃতীয় খণ্ড) অধ্যাপক ড. হায়াৎ মামুদ ও অধ্যাপক ড. মোহাম্মদ আমীন।
- ৮. বাংলা ভাষার প্রয়োগ ও অপপ্রয়োগ বাংলা একাডেমি কর্তৃক প্রকাশিত।

REFERENCE SITE

5.1.4 Level-2, Fall

5.1.4.1 MATH 231 Complex Variables and Linear Algebra

COURSE INFORMATION							
Course Code	: MATH IV	Lecture Contact Hours	: 3.00				
Course Title	: Complex Variable and Linear Algebra	Credit Hours	: 3.00				
DDE DECLIGIES							

PRE-REQUISITE

Course Code: MATH 101, MATH 105

Course Title: Differential Calculus and Integral Calculus, Vector Analysis, Matrix and Co-ordinate Geometry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To teach the students the concepts, principles and working field of Complex Variable and Linear Algebra. It is targeted to provide a basic foundation and applications of complex analysis and to develop the topics of analytic functions, the elementary functions and contour integration. Finally this course is designed to demonstrate practical applications and problems by using the sectors surrounding Complex Variable and Linear algebra.

OBJECTIVE

- 1. Be able to impart basic knowledge about Complex Variable and Linear algebra.
- 2. Be able to familiarize the students with the characteristics of Complex Integration.
- 3. Be proficient with basic methods of complex differentiation, different matrix decomposition and their application.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Recall the basic idea about Complex Variable and Linear algebra.	C1-C2	1		1	T, F
CO2	Explain the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.	C2	1		2	T, Mid Term Exam, F
СОЗ	Apply various types of matrix decomposition to solve different engineering problems.	СЗ	1,3		2	T, Mid Term Exam, F

(C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create; CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Complex Variable: Complex number system, General functions of a complex variable, Limits and continuity of a function of complex variable and related theorems, Differentiation and the cauchy Riemann equations, Mapping by elementary functions, Line integral of a complex function, Cauchy's Integral formula, Complex function, Convergence and Uniform convergence, Liouville's theorem, Taylor's and Laurents theorem, Singular residues, Cauchy's residue theorem.

Linear Algebra:

Vector space and its basis and dimension. Linear Transformations; Kernel and range of linear transformations, Matrix Decomposition, LU Decomposition, QR decomposition, Eigen value decomposition, Singular Value Decomposition. Introduction to Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Common Spatial Pattern (CSP).

SKILL MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
140.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Recall the basic idea about Complex Variable and Linear algebra.	3											
CO2	Explain the complex functions by line integrals, Cauchy's integral formulae and Cauchy's residue theorem.	3											
CO3	Apply various types of matrix decomposition to solve different engineering problems.	3											

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Justification for CO-PO mapping:

Mapping	Corresponding Level of matching	Justifications
CO1-PO1(a)	3	The knowledge of mathematics regarding Complex Variable, Linear algebra has to be applied to describe the operation of different components of Biomedical Engineering.
CO2-PO1(a)	3	In order to explain the characteristics of various components of Biomedical Engineering, the knowledge of mathematics regarding Complex Variable is needed.
CO3-PO1(a)	3	Matrix decomposition is required to interpret mathematics, science and engineering study.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHI	Course Offered by Ot NG METHODOLOGY	ner Departments				
Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method						
COURSE	SCHEDULE					
Week 1	COMPLEX VARIABLE					
Class-1	Complex number system					
Class-2	Complex number system					
Class-3	General functions of a complex variable					
Week 2	COMPLEX VARIABLE					
Class-4	Limits and continuity of a function of complex variable and related theorems					
Class-5	Limits and continuity of a function of complex variable and related theorems	CT-1				
Class-6	Limits and continuity of a function of complex variable and related theorems					
Week 3	COMPLEX VARIABLE					
Class-7	Differentiation of complex function					
Class-8	Differentiation of complex function					
Class-9	The Cauchy Riemann equations - concepts					
Week 4	COMPLEX VARIABLE					
Class-10	The Cauchy Riemann equations - problems					
Class-11	Mapping by elementary functions					
Class-12	Line integral of a complex function					
Week 5	COMPLEX VARIABLE					
Class-13	Cauchy's Integral formula,	CT-2				
Class-14	Complex function,					
Class-15	Convergence					
Week 6	COMPLEX VARIABLE					
Class-16	Uniform convergence					
Class-17	Liouville's theorem					
Class-18	Taylor's theorem					
Week 7	COMPLEX VARIABLE					
Class-19	Laurents theorem					
Class-20	Singular residues					
Class-21	Cauchy's residue theorem					
Week 8	LINEAR ALGEBRA					

Course Offered by Other Departments

Class-22	Vector space and its basis.	Departments
Class-23	Vector space and its dimension.	
Class-24	Linear Transformations	
Week 9	LINEAR ALGEBRA	
Class-25	Kernel of linear transformations	
Class-26	Kernel of linear transformations	
Class-27	Range of linear transformations	Mid Term
Week 10	LINEAR ALGEBRA	
Class-28	Range of linear transformations	
Class-29	Matrix Decomposition	
Class-30	LU Decomposition	
Week 11	LINEAR ALGEBRA	
Class-31	DU Decomposition	
Class-32	QR decomposition	
Class-33	QR decomposition	_
Week 12	LINEAR ALGEBRA	
Class-34	Eigen value decomposition	
Class-35	Singular Value Decomposition.	1
Class-36	Singular Value Decomposition.	1
Week 13	LINEAR ALGEBRA	
Class-37	Introduction to Principal Component Analysis (PCA)	CT-4
Class-38	Introduction to Principal Component Analysis (PCA)	
Class-39	Independent Component Analysis (ICA)	
Week 14	LINEAR ALGEBRA	
Class-40	Independent Component Analysis (ICA)	
Class-41	Common Spatial Pattern (CSP).	
Class-42	Common Spatial Pattern (CSP).	
ASSESSM	1ENT STRATEGY	<u> </u>

Course Offered by Other Departments

Components		Grading	СО	Blooms Taxonomy
	Class Test/		CO1, CO2	C1, C2
Continuous Assessment	Assignment 1-	20%	CO3	C3
(40%)	Class Participation	5%	CO3	C3
	Mid term	15%	CO2, CO3	C2,C3
			CO 1	C1, C2
Final	l Exam	60%	CO 2	C2
			CO 3	C3
Total	Total Marks 100			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

1. Theory and functions of complex variables, Shanti Narayan.

REFERENCE BOOKS

- 1. Complex Variables by -Murray R. Spiegel, Schaum's Outline Series.
- 2. Elementary Linear algebra Wiely, Howard Anton and Chris Rorres.

REFERENCE SITE

--

5.1.5 Level-3, Spring

5.1.5.1 GERM 352 Fundamentals of Research Methodology (Sessional)

COURSE INFORMATION									
Course Code	: GERM 352	Lecture Contact Hours	: 4.00						
Course Title : Fundamentals of Research Methodology (Sessional)		Credit Hours	: 2.00						
PRE-REQUISIT	PRE-REQUISITE								
None									

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The Fundamentals of Research Methodology is a hands-on course designed to impart education in the foundational methods and techniques of academic research in Science and Engineering context. UG students would examine and be practically exposed to the main components of a research framework i.e., problem definition, research design, data collection, ethical issues in research, time management, report writing, and presentation. Once equipped with this knowledge, participants would be well-placed to conduct disciplined research under supervision in an area of their choosing. In addition to their application in an academic setting, many of the methodologies discussed in this course would be similar to those deployed in professional research environments.

OBJECTIVES

- 1. To develop a research orientation among the UG students and to acquaint them with fundamentals of research methods.
- 2. To evaluate/review related extant literature, form a variety of sources, pertinent to the research objectives/questions.
- 3. To expose students to various research methodologies (design), relevant to the research problem needing to be addressed.
- **4.** To explain and justify how researchers will collect and analyse research data.
- **5.** To educate students in the common mistakes, research misconduct, and ethical considerations in the field of research methodology.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to understand the research fundamentals and formulate problem statement and research questions/objectives.	2	C2	-			Assignment/ Quiz
CO2	Be able to formulate and compose a research proposal considering research activities/design, background studies, and following standard guidelines.	4	С3	-			Report/Prese ntation/ Assignment/ Quiz
СОЗ	Be able to develop writing and presentation skill, and demonstrate ethical considerations in conducting research.	10	С3	-			Report/Prese ntation/ Assignment

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam;

C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create

COURSE CONTENT

- 1. Foundations of Research: Meaning of Research; Definitions of Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method.
- **2. Problem Identification and Formulation:** Meaning and need of Review of Literature; How to Conduct the Review of literature; Research Question Investigation Question Measurement Issues Hypothesis Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing Logic & Importance.
- **3. Research Design:** Concept and Importance in Research Features of a good research design Exploratory Research Design concept, types and uses, Descriptive Research Designs concept, types and uses. Experimental/Computational Design: Concept of Independent & Dependent variables.
- **4. Data Analysis:** Data Preparation Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis Cross tabulations and Chi-square test including testing hypothesis of association.
- **5. Research Misconduct and Ethics:** Understand the research misconduct; type of research misconduct; Ethical issues in conducting research; Ethical issues related to publishing, Plagiarism and Self-Plagiarism.
- **6.** Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to search required information effectively; Reference Management Software like Zotero/Mendeley; Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiarism. Time management and developing Gantt Charts.

CO-PO MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Understand the research fundamentals and												
CO1	formulate problem statement and research		3										
	questions/objectives.												
	Formulate and compose a Research proposal												
CO2	considering research activities, background				3								
	studies, and following standard guidelines.												
	Develop writing and presentation skill, and												
CO3	demonstrate ethical considerations in										3		
	conducting research.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	24
Practical / Tutorial / Studio	12
Student-Centred Learning	12
Self-Directed Learning	
Non-face-to-face learning	12
Report Preparation	18
Formal Assessment	
Continuous Assessment	1.5
Report Submission (2)	-
Presentation (2)	0.5
Total	80

TEACHING METHODOLOGY

Lecture and Discussion, Mini-Seminars by Experts, Co-operative and Collaborative Method, Problem Based Method

Week	Lecture	Topics
1	Lec 1	Foundations of Research: Meaning of Research; Definitions of Research; Objectives
	Lec 2	Research; Motivation in Research; General Characteristics of Research; Criteria of Goo
	Lec 3	Research; Types of Research; Concept of theory, empiricism, deductive and inductive theor
	Lec 4	Characteristics of scientific method.
2	Lec 5	Practice session on Foundations of Research
	Lec 6	
	Lec 7	
	Lec 8	
3	Lec 9	Problem Identification & Formulation: Meaning & need of Review of Literature; How
	Lec 10	Conduct the Review of literature; Research Question – Investigation Question – Measurement
	Lec 11	Issues - Hypothesis - Qualities of a good Hypothesis - Null Hypothesis & Alternati
	Lec 12	Hypothesis. Hypothesis Testing – Logic & Importance.
4	Lec 13	Practice session on Problem Identification & Formulation
	Lec 14	
	Lec 15	
	Lec 16	
5	Lec 17	Research Design: Concept and Importance in Research – Features of a good research design
	Lec 18	- Exploratory Research Design - concept, types and uses, Descriptive Research Designs
	Lec 19	concept, types and uses. Experimental Design: Concept of Independent & Dependent
	Lec 20	variables.
6	Lec 21	Practice session on Research Design
	Lec 22	
	Lec 23	
	Lec 24	
7	Lec 25	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie char
	Lec 26	percentages), Bivariate analysis - Cross tabulations and Chi-square test including testi
	Lec 27	hypothesis of association.
	Lec 28	
8	Lec 29	Practice session on Data Analysis
	Lec 30	
	Lec 31	
	Lec 32	
9	Lec 33	Research Misconduct and Ethics: Understand the research misconduct; type of research
	Lec 34	misconduct; Ethical issues in conducting research; Ethical issues related to publishing
	Lec 35	Plagiarism and Self-Plagiarism.
	Lec 36	
10	Lec 37	Practice session on Research misconduct and Ethics
	Lec 38	
	Lec 39	
	Lec 40	
11	Lec 41	Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to sear
	Lec 42	required information effectively; Reference Management Software like Zotero/Mendele
	Lec 43	Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiaris
	Lec 44	Time management and developing Gantt Charts.
12	Lec 45	Practice session on Use of tools / techniques for Research
	Lec 46	
	Lec 47	

	Lec 48	
13	Lec 49	Review Session (Theory) – I
	Lec 50	/Final Presentation
	Lec 51	
	Lec 52	
14	Lec 53	Review Session (Practice) – II
	Lec 54	/Final Presentation
	Lec 55	
	Lec 56	

ASSESSMENT STRATEGY

Assessment Crit	eria	CO	Dlaama Tayanamy
Components	Grading	CO	Blooms Taxonomy
Assignment I	20%	CO1 and CO3	C2, C3
Assignment II	50%	CO2 and CO3	C3
Continuous Assessment	30%	CO1 and CO2	C2, C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Engineering Research Methodology: A Practical Insight for Researchers. Springer, by Deb, Dipankar, Dey, Rajeeb, Balas, Valentina E.
- 2. Research Methods for Engineers, 1st Edition, by David V. Thiel.

REFERENCE BOOKS

- 1. Handbook of Research Methodology by Talati, J.K.
- 2. Introducing Research Methodology: A Beginner's Guide to Doing a Research Project by <u>Uwe Flick</u>
- 3. DRM, a Design Research Methodology by Lucienne T.M. Blessing and Amaresh Chakrabarti
- 4. Research Methods: Information, Systems, and Contexts by Kirsty Williamson, Graeme Johanson
- 5. Zelkowitz, M. V. and Wallace, D. R. (1998), Experimental models for validating technology, *Computer*, vol. 31, no. 5, pp. 23-31.
- 6. Internet, mail, and mixed-mode surveys: the tailored design method (3rd ed.) by Dillman, D. A., Smyth, J. D., & Christian, L. M.
- 7. Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, by Cohen, J., Cohen, P., West, S., & Aiken, L.
- 8. Experimental and Quasi-Experimental Design for Generalized Causal Inference. Boston, Mass: Houghton Mifflin, by Shadish W.R., Cook T.D. & Campbell P.T.

REFERENCE SITES

_

5.1.6 Level-4, Spring

5.1.6.1 GEPM 481 Project Management and Finance

COURSE INFORMATION								
Course Code		Lecture Contact Hours	: 3.00					
Course Title	: GEPM 481 : Project Management and Finance	Credit Hours	: 3.00					
PRE-REQUISITE								

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides the students with the ability to predict as many dangers and problems as possible and to plan, organize and control activities so that one project can be completed as successfully as possible in spite of all the risks. Illustrates the principles to protect the environment by ensuring that a local planning authority when deciding whether to grant planning permission for a project which likely to have significant effects on environment.

OBJECTIVE

- Successful development of projects procedures of initiation, planning, execution, regulation and closure as we the guidance of the project team's operation towards achieving all the agreed upon goals within the set scope, time, quality and budget standards.
- 2. Develop, implement, monitor and maintain environmental strategies, policies, programs and systems that prosustainable development.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to list and describe the selection and initiation of individual projects and of portfolios of projects in the enterprise.	C1, C2	1,11	1	-	1	T, F
CO2	Be able to prepare project planning activities that accurately forecast project costs, timelines and quality. Implement processes for successful resource, communication and risk and change management.	С3	1,3,12	1,2	-	1,3	T, F
CO3	Be able to demonstrate effective project execution & control techniques and conduct project closure activities to obtain formal project acceptance.	C2-C4	1,8	1	-	1	MID, F
CO4	Be able to demonstrate effective organizational leadership and change skills for financial management, managing projects, projects teams and stakeholders.	C2	4,10,11		-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Project Management: Definition of Project Management, Project Management Life Cycle, Economic Contexts of Project Management, Project Management in Healthcare Environment, Decision Making Tools for Choosing a Project, Estimating Time, Scheduling Tool, Estimating Cost, Cost Categories, Assessing Cost, Cost Estimation Tools, Project Quality Management, Project Quality Control, Project Quality Assurance, The Process of Communicating, Communication Management Plan, Dealing with Changes, Monitoring and Control Changes, Risk Definition, Identification, Responding and Monitoring, Contract Definition, Types and Organizing Contracts, Procurement Process: Pre-Purchase, Purchase, Post-Purchase, Contract Administration and Close Out, Project Close Out, Roles of Project Manager, Motivation, Teaming and Leadership, Negotiating and Conflict Management, Project Management in Pharmaceutical Industry, Project Management in Medical Device Manufacturing Industry, Sustainability and Green Efforts in Healthcare

Finance: Corporate Finance and Finance Manager, Forms of Business Organization, Goal of Financial Management, Cash Flow, Ratio Analysis, Financial Planning and Financial Planning Model, Percentage of Sales Approach, External Financing and Growth

CKII	T	MA	PP	INC

NI.	Course I coming Outcom				PR	.OG	RAN	JO l	JTCC	MES	(PO)		
No.	Course Learning Outcome	1	1 2 3 4 5 6		7	8	9	10	11	12			
CO1	Be able to list and describe the selection and initiation of individual projects and of portfolios of projects in the enterprise.	3										3	
CO2	Be able to prepare project planning activities that accurately forecast project costs, timelines and quality. Implement processes for successful resource, communication and risk and change management.	3		3									3
CO3	Be able to demonstrate effective project execution & control techniques and conduct project closure activities to obtain formal project acceptance.	3							2				
CO4	Be able to demonstrate effective organizational leadership and change skills for financial management, managing projects, projects teams and stakeholders.				2						2	3	

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Motivation and course introduction	
Lecture 1	Introduction to Project Management and Economic Context of	
	Project Management	
Lecture 2	Decision Making Tools for choosing a Project	
2	Introductory Concepts of Project Management	CT – 1, Final

-	Organizing Structure Influence on Project Choices and Project Selection	Lecture 4
- - -	Calantian	
	Selection	
- -	Time Management	3
	Introductory Concepts of Time Management	Lecture 5
	Estimation and Scheduling Tool	Lecture 6
	Cost Management	4
	Introductory Concepts of Cost Management, Estimating Cost and	Lecture 7
	Cost Estimating Tools	
	Assessing Costs and Allocating Budget Costs	Lecture 8
_	Quality Management	5
_	Introductory Concepts of Quality Management	Lecture 9
	Project Quality Control, Quality Assurance and Quality	Lecture 10
	Assessment	
Midterm, Final	Communication, Adaptability and Risk Management	6
	Communication: The Process of Communication and	Lecture 11
	Communication Management Plan	_
	Adaptability and Risk Management	Lecture 12
	Contracting-Procurement and Project Close out	7
_	Contract Definition, Types and Organizing Contracts	Lecture 13
_	Procurement Process, Project Close Out	Lecture 14
	Midterm Break	
	Management Skills	8
		Lecture 15
	Role of Project Manager: Motivation, Teaming and Leadership	
	Negotiating and Conflict Management	Lecture 16
_	Project Management in Healthcare - 1	9
	Project Management in Pharmaceutical Industry	Lecture 17
CT – 2, Final	Project Management in Medical Device Manufacturing Industry	Lecture 18
	Project Management in Healthcare - 2	10
	Sustainability in Healthcare	Lecture 19
	Healthcare Agility	Lecture 20
	Introduction to Corporate Finance	11
	Corporate Finance and Finance Manager	Lecture 21
	Forms of Business Organization, Goal of Financial Management	Lecture 22
	Financial Statements, Taxes and Cash Flow	12
CT – 3, FINAL	Balance Sheet	Lecture 23
	Income Statement, Taxes	Lecture 24
	Cash Flow and Ratio Analysis	13
	Cash Flow	Lecture 25
	Ratio Analysis	Lecture 26
FINAL	Financial Planning and Corporate Growth	14
	Financial Planning and Financial Planning Model	Lecture 27
	Percentage of Sales Approach, External Financing and Growth	Lecture 28

Comp	onents	Grading	CO	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2	C1,C2,C3
(40%)	Class Participation	5%	CO1	C1,C2
	Midterm	15%	CO1,CO2	C1,C2,C3
			CO 1	CO 1
T:	Exam	60%	CO 2	CO 2
rinai	EXAIII	0070	CO 3	CO 3
			CO 4	CO 4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. David Shirley, Project Management for Healthcare, Second Edition, Taylor & Francis.

REFERENCE BOOKS

- 1. Larson, E.W. and Gray, C.F. (2018), Project management the managerial process, Seventh Edition, McGraw-Hill
- 2. Fundamentals of Corporate Finance 8th Canadian Edition

REFERENCE SITE

--

5.1.7 Level-4, Fall

5.1.7.1 GESL 421 Environment, Sustainability and Law

COURSE INFO	COURSE INFORMATION											
Course Code	: GESL 421	Lecture Contact Hours	: 2.00									
Course Title	: Environment, Sustainability, and Law	Credit Hours	: 2.00									

PRE-REQUISITE

-

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course introduces students to the considerations that need to be made for the environment and sustainability. National and international laws governing the protection of the environment, the relation between sustainable development and environmental protection, the roles involved in adhering to environmental laws, and the ethical obligations towards the environment are covered. Biosafety principles and practices for facilities, safe disposal of biohazardous and medical waste management, biosafety from a hospital perspective are also covered.

OBJECTIVE

- 1. To be familiar with the basic concepts of environmental protection and sustainability required to be followed internationally.
- 2. To have knowledge of the areas where rules and ethics for environmental protection are applied.
- 3. To correctly identify biosafety concerns and apply the principles for biosafety protection and contamination control depending on the scenario.
- 4. To be aware of the considerations for the environment and responsibilities of individuals, health organizations and industries in the safe treatment and disposal of hazardous wastes in hospitals.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to remember environmental laws and sustainability concepts and the issues they are designed to resolve.	C1	7	ı	ı	7	T, MID, F
CO2	Be able to understand the applicable areas and methods for maintaining biosafety principles and hospital waste management.	C2	7	-	-	7	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG - Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C3 - Apply C4 - Analyze	C5 – Evaluate	C6 – Create
---------------	-------------------------	---------------	-------------

COURSE CONTENT

Introduction to Environmental Law and Sustainability: Principles of International environmental law; Sustainable development; Environmental Politics and Economics; Environmental Ethics; International organizations and common laws; Developed and Developing Countries Perspectives; Environmental Law in Bangladesh; Principles of Preventive Action and Precaution; International Environmental Problems; The role of regulation and innovation; Liability in Trade and Business; The Atmosphere and the Climate; Climate Change and Greenhouse

effect; Ozone Layer Protection; Renewable Energy; Green Technology; The Link between Environment and Development; Preservation of Biodiversity and the Ecosystem; Marine Pollution and Biodiversity; Laws against Pollution.

Biosafety: Identifying Biological Safety Concerns; Biohazard Risk Assessment; Routes of Contamination; Methods for Hazard Control; Administrative Responsibilities in Contamination Control; Facility Design Considerations. Hospital Waste Management: Introduction to biomedical waste management in hospital; Responsibility of Staff and Visitors in Contamination Control; Treatment and Disposal Techniques; Water and Air Purification; Biosafety Consideration for Patients: Equipment Sterilization: Disinfection Techniques; Recycled Materials: Bedsheets, gowns, surgical equipment, etc.

SKILL MAPPING

No.	Course Learning Outcome				PR	lOG:	RAN	JO N	JTCC	OMES	(PO)	
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to remember environmental laws and sustainability concepts and the issues they are designed to resolve							3					
CO2	Be able to understand the applicable areas and methods for maintaining biosafety principles and hospital waste management.							3					

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	28
Revision of the previous and (or) subsequent lecture at home	14
Preparation for final examination	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	89

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Weeks	Topics	Assessment
Weeks 1	Introduction to environment, sustainability and law	
Lecture 1	Principles of international environmental laws	
Lecture 2	Sustainable development and the environment	CT – 1 and Midterm, Final
Weeks 2	Environment laws	Filiai
Lecture 3	Environmental Politics and Economics	
Lecture 4	Environmental Ethics	

Weeks 3	Environment laws	
Lecture 5	International organizations and common laws	
Lecture 6	Developed and Developing Countries Perspectives; Environmental	
	Law in Bangladesh	
Weeks 4	Environment laws	
Lecture 7	Principles of Preventive Action and Precaution	
Lecture 8	International Environmental Problems	
Weeks 5	Sustainable Development	
Lecture 9	The role of regulation and innovation	
Lecture 10	Liability in Trade and Business	
Weeks 6	The Atmosphere	
Lecture 11	The Atmosphere and the Climate; Climate Change	Midterm, Final
Lecture 12	Greenhouse effect; Ozone Layer Protection	
Weeks 7	Development	
Lecture 13	Renewable Energy; Green Technology	
Lecture 14	The Link between Environment and Development	
-	MIDTERM	
Weeks 8	Biodiversity	
Lecture 15	Preservation of Biodiversity and the Ecosystem	
Lecture 16	Marine Pollution and Biodiversity; Laws against Pollution	
Weeks 9	Biosafety	
Lecture 17	Identifying Biological Safety Concerns	CT – 2, FINAL
Lecture 18	Biohazard Risk Assessment	
Weeks 10	Contamination Control	
Lecture 19	Routes of Contamination & Methods for Hazard Control	
Lecture 20	Administrative Responsibilities & Facility Design Considerations	
Weeks 11	Hospital Biosafety	
Lecture 21	Introduction to biomedical waste management in hospital	
Lecture 22	Responsibility of Staff and Visitors in Contamination Control	
Weeks 12	Maintaining Disease-free Environment	
Lecture 23	Treatment and Disposal Techniques	CT – 3, FINAL
Lecture 24	Water and Air Purification	,
Weeks 13	Biosafety Consideration for Patients	
Lecture 25	Equipment Sterilization: Disinfection Techniques	
Lecture 26	Recycled Materials: Bedsheets, gowns, surgical equipment, etc.	
Weeks 14	Review Class	
Lecture 27	Review 1	-
Lecture 28	Review 2	
	T STRATEGY	

			CO	Blooms Taxonomy
Comp	oonents	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2	C1, C2
Assessment (40%)	Class Participation	5%	CO2	C2
	Midterm	15%	CO1, CO2	C1, C2
Final	Exam	60%	CO 1	C1
Finai	EXaIII	00%	CO 2	C2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. Thomas Schoenbaum and Michael J. Young, International Environmental Law: Cases, Materials, Problems, Second Edition.

REFERENCE BOOKS

1. Wooley, Dawn P., Byers, Karen B., Biological Safety Principles and Practices, Fifth Edition.

REFERENCE SITE

_

5.1.7.2 GEEM 451 Engineering Ethics and Moral Philosophy

Course		RMATION								
	e Code	: GEEM 351		ture Contact H	lours	: 2.00)			
Course	e Title	: Engineering Ethics and Moral Philosophy	d Cree	dit Hours		: 2.00)			
PRE-F	REQUISIT	<u> </u> `E								
CURR	RICULUM	STRUCTURE								
Outcor	me Based E	Education (OBE)								
SYNO	PSIS/RAT	TIONALE								
manufa profess	acturing, n	principles and guidelines of medicine, genetics, and suct, responsibilities of en in sufficient details.	research are	e taught. Cod	es of c	onduct	as es	tablishe	d by	y institutions
OBJE	CTIVE									
		nd institutional rights according of bioethics in hos	_	•			-	-		
3. To of p	apply guid patients and	elines of bioethics in hosp d live subjects without cau	pital, device using harm o	development,	and bion	medica	l resea	rch requ	iiring	g involvemen
3. To of p	apply guid patients and RSE OUTO	elines of bioethics in hosp I live subjects without cau COMES & GENERIC SI Course Outcome	pital, device using harm o	development, or violating mo	and bio	medica	-	-	iiring	
3. To of p COUR No.	apply guid patients and RSE OUTO Be able t	elines of bioethics in hosp d live subjects without cau	pital, device using harm o	development, or violating mo	and bion	medica	l resea	rch requ	iiring	Assessmen Methods
3. To of p	Be able t moral obl	elines of bioethics in hosp d live subjects without cau COMES & GENERIC St Course Outcome o understand principles	pital, device using harm of KILLS s of ethics,	development, or violating mo Bloom's Taxonomy	and bioral rules	medica	CA	rch requ	iiring	Assessmen Methods
3. To of p COUR No. CO1 CO2	Be able to abide by following Be able to areas of	COMES & GENERIC Some Course Outcome o understand principles igations, and rights o understand the ethica in the industry and a established guidelines o understand the bioethic research and application genetic research, and application genetic research, and application and application genetic research, and application application genetic research, and application application genetic research.	pital, device using harm of KILLS s of ethics, al codes to pply them cs in major on such as	Bloom's Taxonomy C2	PO 8	CP	CA	KP	iiring	Assessmen Methods T, MID, F
3. To of p COUR No. CO1 CO2 CO3	Be able to able to areas of hospitals, a safe man	COMES & GENERIC Some Course Outcome o understand principles igations, and rights o understand the ethica in the industry and a established guidelines o understand the bioethic research and application genetic research, and application genetic research, and application and application genetic research, and application application genetic research, and application application genetic research.	wital, device using harm of KILLS s of ethics, al codes to pply them cs in major on such as ply them in etivities, KP-	Bloom's Taxonomy C2 C2, C3 C2, C3	PO 8 8, 11 8, 11	CP - 5	CA -	KP 7 7	uiring	Assessmen Methods T, MID, F T, MID, F

COURSE CONTENT

ETHICS AND MORAL PHILOSOPHY:

Introduction to Engineering Ethics and Moral Philosophy; Ethics, Values, and Reason

Interests and Consequences; Conflicts of Interests; Moral Obligations and Rights.

Moral Obligations and Moral Rules in Engineering

Negative and Positive, and Universal and Special, Obligations and Rules, Moral rights.

Rights of Privacy/Confidentiality and Intellectual Property

Rights of Privacy and Confidentiality, Intellectual Property Rights.

Institutionalization of Ethical Conduct

The Ethics of Engineering Organizations, Institutional Review Board Determination, Biomedical Engineering Society Code of Ethics.

Major Bioethical areas

Bioethics in Genetically modified organisms and Cloning, Bioethics in Neuronal engineering, Bioethics in Human research and Animal testing, Bioethics in Hospital service, Bioethics in Medical device development, Bioethics in Rehabilitation engineering, Bioethics in Organ transplantation and regenerative medicine, Public Health and Bioterrorism.

SKILL MAPPING

No.	Course Learning Outcome				PR	OGF	RAM	IOU	TCO	MES	(PO)		
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand principles of ethics, moral obligations, and rights								3				
CO2	Be able to understand the ethical codes to abide by in the industry and apply them following established guidelines								3			2	
CO3	Be able to understand the bioethics in major areas of research and application such as hospitals, genetic research, and apply them in a safe manner								3			2	

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING	METHODOLOGY	ed by Other Departments		
Lecture and di	scussion, Co-operative and collaborative method, Problem based method	d		
COURSE SC	HEDULE			
Weeks	Topics	Assessment		
Weeks 1	Introduction to Ethics and Moral Philosophy			
Lecture 1	Ethics, Values, and Reason			
Lecture 2	Ethics in Popular Culture and in Reality			
Weeks 2	Interests and Consequences			
Lecture 3	Interests and Conflicts of Interest	-		
Lecture 4	Consequences: Harms, Benefits, and Risks			
Weeks 3	Moral Obligations and Moral Rules in Engineering	CT – 1 and Midterm, Final		
Lecture 5	Negative and Positive, and Universal and Special, Obligations and Rules	,		
Lecture 6	Moral rights			
Weeks 4	Rights of Privacy/Confidentiality and Intellectual Property			
Lecture 7	Rights of Privacy and Confidentiality			
Lecture 8	Intellectual Property Rights			
Weeks 5	Institutionalization of Ethical Conduct			
Lecture 9	The Ethics of Engineering Organizations			
Lecture 10	Institutional Review Board Determination			
Weeks 6	The Bioethical Engineer			
Lecture 11	Practice in Engineering; Code of Ethics for Engineers	Midterm, Final		
Lecture 12	Biomedical Engineering Society Code of Ethics			
Weeks 7	Bioethics in Genetically modified organisms and Cloning			
Lecture 13	Genetic modification of human and animal			
Lecture 14	Ethical issues in Cloning			
	MIDTERM			
Weeks 8	Bioethics in Neuronal engineering			
Lecture 15	Neuroethics			
Lecture 16	Ethical issues in Artificial intelligence			
Weeks 9	Bioethics in Human research and Animal testing			
Lecture 17	Clinical trials			
Lecture 18	Ethics of using animal models	CT – 2, FINAL		
Weeks 10	Bioethics in Hospital service			
Lecture 19	General Medical ethics, The Patient-Physician Relationship, Autonomy and Privacy of Patients; (case study)			
Lecture 20	Ethics and data mining, Ethical consideration in Clinical engineering			
Weeks 11	Bioethics in Medical device development			
Lecture 21	Ethical Issues in Design and Manufacturing	CT – 3, FINAL		
Lecture 22	FDA regulations for medical devices	C1 - 3, FINAL		
Weeks 12	Bioethics in Rehabilitation engineering			

	55	, ,			
Lecture 23	Ethical concern in rehabilitation engineering				
Lecture 24	Ethics of Biomaterials for implants				
Weeks 13	Bioethics in Organ transplantation and regenerative medicine				
Lecture 25	Ethical issues in organ donation and social taboo				
Lecture 26	Ethics in stem cell research and therapy				
Weeks 14	Bioethics in Biological Warfare				
Lecture 27	Understanding the biological warfare	FINAL			
Lecture 28	Bioethics in biological warfare				

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Components		Grading		
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3	C2, C3
	Class Participation	5%	CO3	C2, C3
	Midterm	15%	CO2	C2, C3
Final Exam 60%			CO 1	C2
		60%	CO 2	C2, C3
			CO 3	C2, C3
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. Ethics in Engineering Practice & Research, Caroline Whitbeck, 2e, Cambridge University Press 2015.

REFERENCE BOOKS

1. Biomedical Ethics for Engineers: Ethics and Decision Making in Biomedical and Biosystem Engineering by Daniel A. Vallero, Academic Press, 2007.

REFERENCE SITE

_

5.2 Department of Electrical, Electronic and Communication Engineering

5.2.1 Level-1, Spring

5.2.1.1 EECE 191 Principles of Electrical Engineering

COURSE INFORMATION							
Course Code	: EECE 191	Lecture Contact Hours	: 3.00				
Course Title	: Principles of Electrical Engineering	Credit Hours	: 3.00				

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome-Based Education (OBE)

SYNOPSIS/RATIONALE

To learn the basics of electrical circuit components, analysis of DC and AC circuits and the basics of electrical machines. The course covers the following modules: DC and AC circuits, DC Generator, DC Motor, AC Machines, and Transformer.

OBJECTIVE

- 1. To understand the basics of AC and DC circuits.
- 2. To apply different laws of circuit theorems for solving various engineering problems.
- 3. To explain the behavior of different electrical machines.
- 4. To analyze different circuit-related complex engineering problems efficiently.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the basics of AC and DC circuits	C2	1	1	-	1,3	T, F
CO2	Be able to apply different laws of circuit theorems for solving various engineering problems.	С3	2	1,3	-	1,3	T, F
CO3	Be able to understand the behavior of different electrical machines.	C2	1	1	-	1	MID, F
CO4	Be able to analyze different circuit-related complex engineering problems efficiently.	C4	2	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

i	C1 Damanhan	C2 Undanstand	C2 Amules	C4 Analysis	C5 Esselvata	C6 Cranta
	CI - Remember	C2 - Understand	C3 - Apply	C4 – Analyze	C5 - Evaluate	Co - Create

COURSE CONTENT

Fundamentals of electrical circuit: Ohm's Law, Kirchhoff's voltage and current laws, Delta-wye transformation, Basic concept on AC and DC circuits, RL, RC, RLC-based AC circuit, Impedance in series, parallel branches, series-parallel circuits, Resonance in AC circuits, Transient response of capacitor and inductor circuits. Electrical networks: Network analysis methods of branch and loop currents, Nodal circuit analysis, Thevenin's, and Norton's theorems. Effective current and voltage: Average values, Form factor, Crest factor, Concept of real and reactive power. Introduction to phasor algebra: Impedance in polar and Cartesian forms, Sinusoidal single-phase circuit analysis, Impedance measuring by vector diagram. Balanced polyphase circuits: Three-phase four-wire and three-

phase three-wire system of electrical load, balanced wye loads, balanced delta loads, power in balanced systems, power factor. Balanced three-phase circuit analysis, and power measurement.

DC Generator: Working principle, types, performances, and characteristics. DC Motor: Working principle, types, performances, speed control, starters and characteristics, AC Machines: Three-phase induction motor principles, equivalent circuit, single-phase induction motor principle, Principles of AC generator. Transformer: Principles of singe and three-phase transformer, Equivalent circuit of single-phase transformer, Different losses of transformers, Instrument Transformer, Applications of various machines in the Biomedical Engineering Field. Technical specifications of different electrical machines.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basics of AC and DC circuits	3											
CO2	Be able to apply different laws of circuit theorems for solving various engineering problems.		3										
CO3	Be able to understand the behavior of different electrical machines.	3											
CO4	Be able to analyze different circuit-related complex engineering problems efficiently.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Fundamentals of Electrical Circuits	
Lecture 1	Ohm's Law, Kirchhoff's voltage and current laws, Series-Parallel	
	circuits	
Lecture 2	Voltage and current division, Delta-wye transformation	
Lecture 3	Basic concept on AC and DC circuits, RL, RC and RLC-based AC	CT – 1, Final
	circuit	
2	Fundamentals of Electrical Circuits (Cont)	

Lecture 4	Impedance in series and parallel branches,	
Lecture 5	Concept of resistance, reactance, inductance, capacitance,	
	susceptance, admittance, and impedance	
Lecture 6	Finding impedance of series-parallel AC circuits	
3	Fundamentals of Electrical Circuits (Cont)	
Lecture 7	Resonance in AC circuits	
Lecture 8	Transient response of capacitor and inductor circuits	
Lecture 9	Sinusoidal-steady-state response	
4	Electrical Network Analysis	
Lecture 10	Network analysis methods of branch and loop currents	
Lecture 11	Nodal circuit analysis, Mesh Circuit Analysis	
Lecture 12	Superposition Theorem	
5	Electrical Network Analysis and Effective Current and Voltage	
Lecture 13	Thevenin's and Norton's theorems	
Lecture 14	Features of AC signal, Average values, RMS value, Form factor,	
	Crest factor, and relevant mathematical problem	
Lecture 15	Concept of real and reactive power and relevant mathematical	CT – 2, Final
	problems	
6	Introduction to Phasor Algebra	
Lecture 16	Impedance in polar and Cartesian forms	
Lecture 17	Sinusoidal single-phase circuit analysis	
Lecture 18	Impedance measuring by vector diagram.	
7	Balanced Poly Phase Circuits	
Lecture 19	Three-phase four-wire and three-phase three-wire system of	
	electrical load	
Lecture 20	Balanced wye loads, balanced delta loads	
Lecture 21	Power in balanced systems	
	Midterm Break	
8	Balanced Poly Phase Circuits (Continue)	
Lecture 22	Power factor measurement of single and 3 phase systems,	
Lecture 23	Balanced three-phase circuit analysis and Power measurement	
Lecture 24	Some related mathematical problem solving	
9	DC Generator	
Lecture 25	Working principles of DC generator	
Lecture 26	Basic components and types of DC generator	Midterm, Final
Lecture 27	Performances and Characteristics, applications of DC generator	
10	DC Motor	
Lecture 28	Working principle of DC motor	
Lecture 29	Basic components and types of DC motor	
Lecture 30	Performances and characteristics, speed control of DC motor	
11	DC Motor (Cont) and AC Machines	
Lecture 31	Different starters of DC motor	
Lecture 32	Applications of DC motor	
Lecture 33	Principles of three-phase induction motor and its equivalent circuit	
12	AC Machines	
Lecture 34	Principles of Single phase induction motor and its equivalent circuit	
Lecture 35	Principles of AC generator	
Lecture 36	Principles of Synchronous Motor and its application	CT – 3, Final
13	Transformer	PIN A I
Lecture 37	Principles of singe and three-phase transformer	FINAL

Lecture 38	Equivalent circuit of single-phase transformer					
Lecture 39	Different loses and efficiencies of transformers and relevant					
	mathematical problems					
14	Transformer (Cont)					
Lecture 40	Instrument transformers					
Lecture 41	Applications of various machines in the Biomedical Engineering					
	Field					
Lecture 42	Familiarization with Technical specifications of different electrical					
	machines.					

ASSESSMENT STRATEGY

Components Grading		СО	Blooms Taxonomy		
Comp	Components			Blooms Taxonomy	
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4	
(40%)	Class Participation	5%	CO3	C2	
	Midterm	15%	CO2	C3	
			CO 1	C2	
Eina!	Final Exam 60%		CO 2	C3	
rinai			CO 3	C2	
			CO 4	C4	
Total	Total Marks 100				

(CO = Course Outcome, C = Cognitive Domain)

Text Books

- 1. Fundamentals of Electric Circuits- Alexander & Sadiku.
- 2. Alternating Current Circuits Russell & George F. Corcoran; John Wiley and Sons.

REFERENCE BOOKS

- 1. Introductory Circuit Analysis R.L. Boylestad; Prentice Hall of India Private Ltd.
- 2. Electrical Machinery Fundamentals- Stephen J Chapman
- 3. A Textbook of Electrical Technology B.L Theraja

REFERENCE SITE

--

5.2.1.2 EECE 192 Principles of Electrical Engineering Sessional

COURSE INFORMATION							
Course Code Course Title	: EECE 192 : Principles of Electrical Engineering Sessional	Lecture Contact Hours Credit Hours	: 3.00 : 1.50				
PRE-REQUISITE							
EECE 191: Principles of Electrical Engineering							
CURRICULUM STRUCTURE							
Outcome-Based Education (OBE)							
SYNOPSIS/RATIONALE							

To learn the basics of electrical circuit components, analysis of DC and AC circuits and the basics of electrical machines. DC and AC circuits, DC Generator, DC Motor, AC Machines, and Transformer module will be covered by this course.

OBJECTIVE

This course aims to practically implement the concepts of AC and DC circuits and learn the principle and applications of different electrical machines.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply different laws of circuit theorems for solving various engineering problems.	С3	2	1	-	1, 3	T, Q, R
CO2	Be able to understand the behavior of different electrical machines.	C2	1	1, 3	-	1, 2, 3	T, Q, R
CO3	Be able to analyze different circuit- related complex engineering problems efficiently.	C4	2	1	-	1, 3	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Construction and operation of simple electrical circuits (Ohm's Law, Series-Parallel, Voltage Divider etc.), KVL and KCL, Superposition Theorem, Thevenin's theorem, alternating current (ac) waves and R-L-C series circuit, the principles and properties of DC Generator, principles and properties of DC Motor, principles and properties of Alternator, principles, and properties of Transformer. Familiarization with the technical specifications of various Electrical Machines

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply different laws of circuit theorems for solving various engineering problems.												
CO2	Be able to understand the behavior of different electrical machines.												
CO3	Be able to analyze different circuit-related complex engineering problems efficiently.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

	G LEARNING STRATEGY	
_	d Learning Activities	Engagement (hours)
Face-to-Face	•	
Lec	7	
Pra	35	
	dent-Centered Learning	-
Self-Directed	-	
	n-face-to-face learning	-
	vision of the previous and (or) subsequent lecture at home	15
Pre	paration for the final examination	10
Formal Asse	essment	
Cor	ntinuous Assessment	1
Lab	Test	1
Qui		0.75
Viv	va	0.25
Total		70
TEACHING	G METHODOLOGY	·
	discussion, Co-operative and collaborative method, Problem based method	nod
COURSE S	CHEDULE	
COURSE S	CHEDULE Lecture Topics	Assessment
COURSE So Week	CHEDULE Lecture Topics Construction and operation of simple electrical circuits	
Week 1 2	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL	
Week 1 2 3	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL	Assessment
Week 1 2 3 4	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem	Assessment
Week 1 2 3 4 5	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem	Assessment Report, Lab Test, Quiz.
Week 1 2 3 4	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1	Assessment Report, Lab Test, Quiz.
Week 1 2 3 4 5	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves	Assessment Report, Lab Test, Quiz
Week 1 2 3 4 5	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break	Assessment Report, Lab Test, Quiz
Week 1 2 3 4 5	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break Study of R-L-C series circuit	Assessment Report, Lab Test, Quiz
Week 1 2 3 4 5 6 7	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break	Assessment Report, Lab Test, Quiz Viva Report, Lab Test, Quiz
Week 1 2 3 4 5 6 7	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break Study of R-L-C series circuit	Assessment Report, Lab Test, Quiz Viva
Week 1 2 3 4 5 6 7	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of KCL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break Study of R-L-C series circuit Experiment on the principles and properties of DC Generator	Assessment Report, Lab Test, Quiz Viva Report, Lab Test, Quiz
Week 1 2 3 4 5 6 7 8 9	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break Study of R-L-C series circuit Experiment on the principles and properties of DC Generator Experiment on the principles and properties of DC Motor	Assessment Report, Lab Test, Quiz Viva Report, Lab Test, Quiz
Week 1 2 3 4 5 6 7 8 9 10	CHEDULE Lecture Topics Construction and operation of simple electrical circuits Verification of KVL Verification of Superposition Theorem Verification of Thevenin's theorem Lab Test 1 Familiarization with alternating current (ac) waves Midterm Break Study of R-L-C series circuit Experiment on the principles and properties of DC Generator Experiment on the principles and properties of DC Motor Experiment on the principles and properties of Alternator	Assessment Report, Lab Test, Quiz Viva Report, Lab Test, Quiz

Course Offered by Other Departments

			CO	Blooms Taxonomy
Comp	Components			
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Einal Evan	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam (60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total Marks 100%		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Fundamentals of Electric Circuits- Alexander & Sadiku.
- 2. Alternating Current Circuits Russell & George F. Corcoran; John Wiley and Sons.

REFERENCE BOOKS

- 1. Introductory Circuit Analysis R.L. Boylestad; Prentice Hall of India Private Ltd.
- 2. Electrical Machinery Fundamentals- Stephen J Chapman
- 3. A Textbook of Electrical Technology B.L Theraja

REFERENCE SITE

--

5.2.2 Level-2, Spring

5.2.2.1 EECE 291 Electronic Circuits and Devices

COURSE INFORMATION							
			: 3.00				
Course Code	: EECE 291	Lecture Contact Hours	: 3.00				
Course Title	: Electronic Circuits and Devices	Credit Hours					

PRE-REQUISITE

EECE 191: Principles of Electrical Engineering

CURRICULUM STRUCTURE

Outcome-Based Education (OBE)

SYNOPSIS/RATIONALE

To teach the students about the concepts, principles, and working of basic electronic circuits. It is targeted to provide a basic foundation for technology areas like electronic devices, communication systems, industrial electronics, instrumentation, control systems, and various electronic circuit designs.

OBJECTIVE

- 1. To understand the basics of electronic devices like Diode, Transistor, MOSFET, Op-Amp, etc., and its applications.
- 2. To become skilled at designing different electronic circuits like rectifiers, amplifiers, active filters, etc. using electronic devices.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's	РО	СР	CA	KP	Assessment
1,0.		Taxonomy	10		011	111	Methods
	Be able to understand semiconductor						
CO1	devices' basic operation and characteristics	C2	1	1	-	1,3	T, F
	like diodes, BJTs, and FETs.						
	Be able to apply the established equivalent						
CO2	models to find the important ac parameters	C3	1	1,3	-	1,3	T, F
	for an amplifier.						
	Be able to analyze the DC and AC output						
CO3	response of a network designed with BJT and	C4	2	1		1 2	MID E
003	become acquainted with the BJT amplifiers'	C4		1	-	1, 3	MID, F
	design process.						
CO4	Be able to understand the characteristics of	C2	2	1,3		1,3	T, F
104	Op-Amps and its applications.	C2	2	1,3	-	1,3	Ι, Γ

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; PR – Presentation; PR – Report; PR – Final Exam)

_	-		•		
C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Introduction to Semiconductors; P-type and n-type semiconductors, p-n junction diode characteristics, Diode applications, half and full-wave rectifier, clipping and clamping circuits; regulated power supply using Zener diode. Bipolar junction transistor (BJT), principle of operation, I-V characteristics, Transistor circuits configurations (CB, CE and CC), BJT biasing, load lines, small-signal analysis of single and multi-stage amplifiers, frequency response of BJT amplifiers. Field effect transistors (FET), principle of operation of JFET and MOSFET, Depletion and Enhancement type NMOS and PMOS, biasing of FETs, Low and High frequency models of FETs, Switching circuit using FETs, Introduction to CMOS. Operational amplifier (OPAMP), linear application of OPAMPs, gain, input and

output impedances, differential amplifiers, common-mode rejection ratio, instrumentation amplifier, active filters, frequency response and noise, zero crossing, positive and negative level detectors, and application of Op-Amp.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand semiconductor devices' basic operation and characteristics like diodes, BJTs, and FETs.	3											
CO2	Be able to apply the established equivalent models to find the important ac parameters for an amplifier.	3											
CO3	Be able to analyze the DC and AC output response of a network designed with BJT and become acquainted with the BJT amplifiers' design process.		3										
CO4	Be able to understand the characteristics of Op-Amps and its applications.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for the final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Assessment	
1	Semiconductor devices	
Lecture 1	Basic idea about Electronics, Examples of electronic devices,	
	and comparison with electrical equipment's.	
Lecture 2	Introduction to semiconductor devices and its classifications,	
	P-type and N-type materials, and doping	CT – 1, Final

	Biasing of FET	
	mathematical problems	
	characteristics of enhancement type MOSFET, and related	
Lecture 27	Construction, operation, input characteristics, output	
	MOSFET, and related mathematical problems.	
Lecture 20	characteristics, output characteristics of depletion type	
Lecture 26	Introduction to MOSFET, construction, operation, input	
Lecture 25	Mathematical problems related to JFET	
9	FET	Midterm
Lecture 24	Pinch off voltage	
Lecture 23	Construction, operation, Drain characteristics, and Transfer characteristics of JFET	
Lecture 23	FET	
Lecture 22	Introduction to FET and comparative studies between BJT and	
8	FET	
	Midterm Break	
Lecture 21	The frequency response of BJT amplifiers	
	common collector configurations	
Lecture 20	Voltage and current gain, input and output impedance of a	
	common emitter configurations	
Lecture 19	Voltage and current gain, input and output impedance of a	
7	ВЈТ	
	common base configurations	
Lecture 18	Voltage and current gain, input and output impedance of a	
Lecture 17	Small-signal analysis of single and multi-stage amplifiers	
	discrete circuits	
Lecture 16	BJT as an amplifier, BJT as a switch, and biasing the BJT for	
6	BJT	
Lecture 15	Mathematical problems related to BJT biasing	
Lecture 14	Mathematical problems related to BJT biasing	CT-2, Final
Lecture 13	BJT Biasing, Mathematical problems related to BJT biasing	
5	BJT	
	using BJT	
Lecture 12	Mathematical problems related to different configurations	
2.00.010 11	CC configurations and characteristics curves	
Lecture 11	Working principle and operating regions of BJT, CB, CE, and	
Lecture 10	Introduction to BJT and construction	
4	BJT	
Lecture y	related problems	
Lecture 9	Clipper circuit and related problems, Clamper circuit and	
Lecture 8	Ripple factor, and related mathematical problems.	
Lecture 7	Diodes Diode rectifiers	
	Applications of diode Diodes	
Lecture 5 Lecture 6	Zener diode and related maths of Zener diode	
I	Shockley's equation and related mathematical problems	
Lecture 4	I-V characteristics of the diode and equivalent circuit of diodes,	
2	Diodes	
	semiconductor diodes	
Lecture 3	Semiconductor diode and its band diagram, Biasing of	

Lecture 28	Biasing of JFET and related problems	_
Lecture 29	Biasing of MOSFET and related problems	
Lecture 30	Biasing of MOSFET and related problems	
11	MOSFET	
Lecture 31	Threshold voltage, Body effect, current-voltage characteristics	
	of an enhancement MOSFET	
Lecture 32	Single-stage MOS amplifiers, MOSFET as a switch, CMOS	Final
	inverter	
Lecture 33	Mathematical Problems	
12	OP-AMP	
Lecture 34	Introduction to Op-amp, Characteristics, Gain, Input and	
	Output Impedances	OT 2 E' 1
Lecture 35	Summing, Scaling, Averaging, and Subtractor Amplifiers	CT – 3, Final
Lecture 36	Differential Amplifiers, Differentiator, and Integrator	
13	OP-AMP	
Lecture 37	Common Mode Rejection Ratio (CMRR)	
Lecture 38	Active filters	
Lecture 39	Active filters	
14	OP-AMP	FINAL
Lecture 40	Instrumentation Amplifiers	FINAL
Lecture 41	Zero-Crossing Detector, Positive and Negative Voltage level	
	detector	
Lecture 42	Other Applications of Op-Amp	

ASSESSMENT STRATEGY

	Components Grading		CO	Blooms Taxonomy		
Comp	Components		20	Diodnis Taxonomy		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4		
(40%)	Class Participation	5%	CO3	C2		
	Midterm	15%	CO2	C3		
			CO 1	C2		
Final	Evam	60%	CO 2	C3		
rillai	Final Exam		CO 3	C2		
			CO 4	C4		
Total	Total Marks 100%					

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Electronic Device and Circuit Theory by Robert L. Boylestad
- 2. Op-amps and linear integrated circuits by Ramakant A Gayakwad

REFERENCE BOOKS

- 1. Operational Amplifiers and Linear Integrated Circuit by Robert F. Coughlin and Frederic R. Driscoll.
- 2. Microelectronic Circuits Theory and Applications by Adel S. Sedra and Kenneth C. Smith
- 3. Electronic Devices Circuits by Millman and Halkias

REFERENCE SITE

5.2.2.2 EECE 292 Electronic Circuits and Devices Sessional

PRE-REQUISITE

EECE 291: Electronic Devices and Circuits

CURRICULUM STRUCTURE

Outcome-Based Education (OBE)

SYNOPSIS/RATIONALE

To learn and familiarize with the basics of electronic circuits and utilize electronic devices for practical purposes.

OBJECTIVE

- 1. To learn about electronic circuits and to implement the basic electronic devices circuits.
- 2. To know and use of BJT, MOSFET and JFET devices for theoretical and practical purposes.
- 3. To learn about operational amplifier and filter circuits.
- 4. To solve complex design problems regarding electronics based on realistic aspects.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand practically the basic electronic devices such as Diode, BJT, MOSFET, FET, and special electronic devices like operational amplifiers.	C2	2	1	-	1, 3	T, Q, R
CO2	Be able to apply the basic circuit components and know-how to connect them to make filters and other devices with amplifiers.	СЗ	1	1, 3	-	1, 2, 3	T, Q, R
CO3	Be able to analyze the concepts of electronic devices, circuits, and uses.	C4	2	1	-	1, 3	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	--------------	---------------	-------------

COURSE CONTENT

Study of Diode Characteristics, Study of Diode Rectifier, Study of NPN CB (Common Base) Transistor Characteristics, Study of NPN CE (Common Emitter) Transistor Characteristics, Study of BJT Biasing Circuits, Study the Characteristics of JFET, MOSFET, Mathematical Operations Using Op-Amp, Active Filters, etc.

SKILL MAPPING

						Сои	rse (Offer	red b	y Oth	er De	partme	nts
					PR	OGI	RAN	JO I	JTCC	OMES	(PO))	
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand practically the basic electronic devices such as Diode, BJT, MOSFET, FET, and special electronic devices like operational amplifiers.		3										
CO2	Be able to apply the basic circuit components and know-how to connect them to make filters and other devices with amplifiers.	3											
CO3	Be able to analyze the concepts of electronic devices, circuits, and uses.		3										
(Numer	rical method used for mapping which indicate	s 3 as	s high	, 2 as	s me	diun	ı, an	d 1 a	as lov	v leve	l of n	natching	g)
TEAC	HING LEARNING STRATEGY												
	ng and Learning Activities									En	gagen	nent (ho	ours)
	-Face Learning												
	Lecture									7			
	Practical / Tutorial / Studio									35			
	Student-Centered Learning									-			
Self-Di	rected Learning												
	Non-face-to-face learning									-			
	Revision of the previous and (or) subsequer	it leci	ture a	t hon	ne							15	
	Preparation for the final examination									10			
Formal	Assessment												
	Continuous Assessment									1			
	Lab Test											1	
	Quiz).75	
	Viva									0.25			
Total												70	
TEAC	HING METHODOLOGY												
Lecture	and discussion, Co-operative and collaborati	ve m	ethod	, Pro	blem	bas	ed n	netho	od				
COUR	SE SCHEDULE												
Wee	ek Lecture	Toni	cs						<u> </u>		Ass	essmen	t
1	Study of Diode Characteristics	- ~P1									- 100		
2 Study of Diode Rectifier 3 Study of CB (Common Base) Transistor Characteristics													
				_									
	4 Study of CE (Common Emitter) Transistor Characteristics				=	Rep		ab Test,	, Quiz				
5					\dashv		7	Viva					
_	-								_	\dashv			
6	Study the Characteristics of JFET												

Midterm Break

Report, Lab Test, Quiz,

Viva

Study of Inverting and Non- inverting operations using OP-AMP

Study the Characteristics of MOSFET

Mathematical operations using OP-AMP

Design Differential Amplifiers using Op-Amp

Design Active Filters using Op-Amp

8

9

10

11

12

C4, C5, C3

13	Lab Test- 02	and Viva		
14	Final Quiz			
ASSESSME	NT STRATEGY	Y		
			CO	Blooms Taxonomy
Com	ponents	Grading		Biodina Tuxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0070)	17:	100/	CO1 CO2 CO2	C4 C5 C2

CO1, CO2, CO3

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Electronic Device and Circuit Theory by Robert L. Boylestad
- 2. Op-amps and linear integrated circuits by Ramakant A Gayakwad

10%

100%

REFERENCE BOOKS

Total Marks

Viva

3. Operational Amplifiers and Linear Integrated Circuit – by Robert F. Coughlin and Frederic R. Driscoll.

REFERENCE SITE

__

5.2.3 Level-3, Spring

5.2.3.1 EECE 391 Digital Electronics

COURSE INFO	RMATION		
			: 3.00
Course Code Course Title	: EECE 391 : Digital Electronics	Lecture Contact Hours Credit Hours	: 3.00

PRE-REOUISITE

EECE 291: Electronic Devices and Circuits

CURRICULUM STRUCTURE

Outcome-Based Education (OBE)

SYNOPSIS/RATIONALE

This course will cover the topics/subtopics that will help to learn and familiarize the fundamentals of digital electronics, including the basic logic gates, combinational and sequential circuits, Programmable logic devices, and Modular sequential logic circuit design.

OBJECTIVE

- 1. To acquire the basic knowledge of digital logic levels and knowledge to understand digital electronics circuits.
- 2. To prepare students for performing the analysis and design of various combinational and sequential circuits.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	PO	СР	CA	KP	Assessment Methods
CO1	Be able to remember the structure of various number systems and its application in digital design.	C1	1	1	-	1,3	T, F
CO2	Be able to understand the design criterion of combinational and sequential logic circuits as needed.	C2	1	1,3	-	1,3	T, F
СОЗ	Be able to apply the logic gates to solve the real-world Problem of electronic circuits.	C3	2	1	-	1, 3	MID, F
CO4	Be able to analyze the memory elements, state table, and state diagrams of the sequential circuit.	C4	2	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Introduction to number systems and codes: Number base conversion, Complements, and related problems, Binary codes; Analysis and synthesis of digital logic circuits: Basic logic functions, Boolean algebra, combinational logic design, minimization of combinational logic. Implementation of basic static logic gates in CMOS and BiCMOS: DC characteristics, noise margin, and power dissipation. Power optimization of basic gates and combinational logic circuits. Modular combinational circuit design: Pass transistor, pass gates, multiplexer, demultiplexer, and their implementation in CMOS, decoder, encoder, comparators, binary arithmetic elements, and ALU design. Programmable logic devices: Logic arrays, field programmable logic arrays, and programmable read-only memory. Sequential circuits:

Different types of latches, SR flip-flops, master-slave, JK flip-flops, T & D flip-flops, Flip-flops design using ASM approach, Timing analysis, and power optimization of sequential circuits. Modular sequential logic circuit design:

Shift registers, Parallel I/O and Series I/O shift registers, Universal shift register, Counters: Introduction, Asynchronous and Synchronous counters: up and down, BCD counters, Ring counter, Johnson counter. Applications of registers and counters.

SKII	т	B 4	4 1	nni	
>K		IVI	ΑΙ	77	IIN (-

No.	Course Learning Outcome				PR	.OGI	RAN	1OL	JTCO	MES	(PO)		
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to remember the structure of various number systems and its application in digital design.	3											
CO2	Be able to understand the design criterion of combinational and sequential logic circuits as needed.	3											
СОЗ	Be able to apply the logic gates to solve the real-world Problem of electronic circuits.		3										
CO4	Be able to analyze the memory elements, state table, and state diagrams of the sequential circuit.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Introduction to number systems and codes	
Lecture 1	Number base conversion	
Lecture 2	Complements and related problems	
Lecture 3	Binary codes	
2	Analysis and synthesis of digital logic circuits	CT – 1, Final
Lecture 4	Basic logic functions	
Lecture 5	Boolean algebra	
Lecture 6	Boolean algebra	
3	Analysis and synthesis of digital logic circuits	
Lecture 7	Combinational logic design	
Lecture 8	Combinational logic design	

Lecture 9	Minimization of combinational logic	
4	Implementation of basic static logic gates in CMOS and BiCMOS	
Lecture 10	DC characteristics, noise margin, and power dissipation	
Lecture 11	Power optimization of basic gates	
Lecture 12	Combinational logic circuits	
5	Modular combinational circuit design	
Lecture 13	Pass transistor, Pass gates	
Lecture 14	Multiplexer	
Lecture 15	Demultiplexer	Midterm, Final
6	Modular combinational circuit design	
Lecture 16	Implementation of multiplexer and demultiplexer in CMOS	
Lecture 17	Decoder	
Lecture 18	Encoder	
7	Modular combinational circuit design	
Lecture 19	Comparators	
Lecture 20	Binary arithmetic elements and ALU design	
Lecture 21	Binary arithmetic elements and ALU design	
	Midterm Break	
8	Programmable logic devices	
Lecture 22	Logic arrays	
Lecture 23	Field programmable logic arrays	
Lecture 24	Programmable read-only memory	
9	Sequential Circuits	
Lecture 25	Different types of latches	
Lecture 26	SR flip-flops, master-slave	CT – 2, Final
Lecture 27	JK flip-flops	
10	Sequential Circuits	
Lecture 28	T & D flip-flops	
Lecture 29	Flip-flops design using the ASM approach	
Lecture 30	Timing analysis and power optimization of sequential circuits	
11	Modular sequential logic circuit design	
Lecture 31	Shift registers	
Lecture 32	Parallel I/O shift registers.	
Lecture 33	Series I/O shift registers and	
12	Modular sequential logic circuit design	
Lecture 34	Universal shift register	
Lecture 35	Counters: Introduction	CIT
Lecture 36	Asynchronous counters: up and down	CT – 3, FINAL
13	Modular sequential logic circuit design	
Lecture 37	Synchronous counters: up and down	
Lecture 38	BCD counters	
Lecture 39	Ring counter	FINAL
14	Application of sequential logic circuits	FINAL
Lecture 40	Johnson counter	
Lecture 41	Applications of registers	
	Applications of counters	

			Ţ				
Comp	Components Grading		CO	Blooms Taxonomy			
Continuous 1-3		20%	CO1, CO3, CO4	C2, C4			
Assessment (40%)	Class Participation	5%	CO3	C2			
	Midterm	15%	CO2	C3			
			CO 1	C2			
Eina!	E	60%	CO 2	C3			
rinai	Final Exam		CO 3	C2			
			CO 4	C4			
Total	Marks	100%	1				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

Digital Electronics:

1. M. Morris Mano and Michael D. Ciletti, Digital Design, 6th Edition, 20108. ISBN -10: 0-07-147217-7

REFERENCE BOOKS

2. S Salivahanan and S Arivazhagan, Digital Electronics, 2011.

REFERENCE SITE

--

5.2.3.2 EECE 392 Digital Electronics Sessional

COURSE INFO	OURSE INFORMATION											
Course Code	: EECE 392	Lecture Contact Hours	: 3.00									
Course Title	: Digital Electronics Sessional	Credit Hours	: 1.50									

PRE-REQUISITE

Course Code: EECE 295

Course Title: Digital Electronics

CURRICULUM STRUCTURE

Outcome-Based Education (OBE)

SYNOPSIS/RATIONALE

To learn and familiarize with the basics of digital electronic circuits and utilize digital electronic circuits for practical purposes.

OBJECTIVE

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EECE 391. In the second part, students will design simple systems using the principles learned in EECE 391.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply the knowledge of basic digital electronic circuits practically.	С3	2	1	-	1, 3	T, Q, R
CO2	Be able to analyze and evaluate the necessity and utilization of different types of logic and sequential circuits for real problems.	C4, C5	2, 5	1, 3	-	1, 2, 3	T, Q, R, ASG
СОЗ	Be able to create different digital circuits with ICs to use for our day to day necessities.	C6	5, 9	1	-	1, 3	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	------------	--------------	---------------	-------------

COURSE CONTENT

Familiarization and use of truth table of basic logic Gates, De Morgan's law, Digital logic circuit and its simplification using Boolean algebra, Adder & subtractor circuits, Encoder and Decoder circuits, BCD to seven-segment decoder circuit, Multiplexer & de-multiplexer, Flip-flop circuits, Up and down counters.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
1.0.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply the knowledge of basic digital electronic circuits practically.		3										
CO2	Be able to analyze and evaluate the necessity and utilization of different types of logic and sequential circuits for real problems.		3			3							
CO3	Be able to create different digital circuits with ICs to use for our day to day necessities.		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Familiarization and use of truth table of basic logic Gates	
2	Verification of De Morgan's laws using the logic gates	
3	Implementing the truth tables of a digital logic circuit and its simplification using Boolean algebra	Report, Assignment, Lab Test, Viva
4	Design of adder & subtractor circuits using basic gates	
5	Design and implement of encoder and decoder circuits	

6	Design and implement of BCD to seven-segment decoder circuit using	
	logic gates	
7	Lab Test with Viva-01	
	Midterm Break	
8	Design and implement of multiplexer circuit using logic gates	
9	Design and implement of the de-multiplexer circuit using logic gates	
10	Design and implement various types of clocked flip-flop circuits using	
	logic gates	Report, Lab Test, Quiz,
11	Design and implement of up and down counters	Viva
12	Quiz test	
13	Lab Test-02	
14	Final Viva with Reports	

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy
Comp	Components Grading			,
Continuous			CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
Viva 10%		CO1, CO2, CO3	C4, C5, C3	
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

1. Digital Logic and Computer Design- M Morris Mano; Prentice Hall of India Private Ltd

REFERENCE BOOKS

- 1. Digital Fundamentals F Loyd; Prentice-Hall International, Inc
- 2. Pulse, Digital and Switching waveforms Jacob Millman& Herbert Taub; Tata McGraw-Hill

REFERENCE SITE

--

5.3 Department of Computer Science and Engineering

5.3.1 Level-2, Spring

5.3.1.1 CSE 291 Computer Programming

CC	OURSE INFORM	ATION		
				: 3.00
	ourse Code ourse Title	: CSE 291 : Computer Programming	Lecture Contact Hours Credit Hours	: 3.00

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce with the most recent technology and to teach students the basic concepts of computer programming.

OBJECTIVE

- 1. To have basic idea about computer organization
- 2. To understand the basics of computer programming in C/C++.
- 3. To learn how to think about the problems, their solutions and translating it to programming

LEARNING OUTCOMES& GENERIC SKILLS

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to explain the difference between object oriented programming language and procedural language	C1,C2	1	-	1	T, ASG
CO2	Be able to apply C/C++ features such as composition of structures, objects, operator overloading, inheritance, polymorphism etc.	C3, C4	3	-	3	MT, F
CO3	Be able to evaluate the relative merits of different algorithm to solve and design programming constructs for real world problems	C5,C6	4	-	2, 5	Pr, F

 $(CP-\ Complex\ Problems,\ CA-Complex\ Activities,\ KP-Knowledge\ Profile, T-Test\ ;\ PR-Project\ ;\ Q-Quiz;\ ASG-Assignment;\ Pr-Presentation;\ R-Report;\ F-Final\ Exam,\ MT-Midterm\ Exam)$

COURSE CONTENT

Fundamentals of computer; Major components of a computer: processor, memory, I/O devices, operating systems; Basic Programming Concepts: object, source, executable code; Program development stages: algorithms and flow charts; Number system: binary, octal, decimal and hexadecimal systems;

Structured Programming using C: data types, variables and constants, operators, expressions, control statements: "if else", "switch"; Loop, function, arrays, strings, pointers, and user defined data types: structure, unions; Input output and files.

Object oriented Programming using C++: philosophy of object oriented programming (OOP), advantages of

OOP over structured programming, classes and objects, access specifiers, static and non-static members, Array of objects, constructors, destructors, copy constructor, abstraction, encapsulation, polymorphism: operator overloading, abstract classes, virtual functions, overriding; inheritance: single and multiple inheritance.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to explain the difference between												
CO1	object oriented programming language and	3											
	procedural language												
CO2	Be able to apply C/C++ features such as composition of structures, objects, operator overloading, inheritance, polymorphism etc.		3										
СОЗ	Be able to evaluate the relative merits of different algorithm to solve and design programming constructs for real world problems		2	3							2		

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level	Justifications
CO1-PO1	High	Achieving in-depth of knowledge on programming concepts and the features of a programming languages.
CO2-PO2	High	Developing the skill of analysis to execute proper programming concepts to solve a problem.
CO3-PO2	Medium	Analysing a problem to find an appropriate solution.
СОЗ-РОЗ	High	Designing valid algorithm and solve the real life problems using specified programming language.
CO3-PO10	Medium	Through presentation, the communication skills will be developed.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	64
Revision	-
Assessment Preparations	20
Formal Assessment	
Continuous Assessment	3
Final Examination	3
Total	132

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Week	Lecture	Topics	
1	Lec 1	Programming Concepts, Program development	
	Lec 2	Stages, Structured programming language	
	Lec 3	Stages, Structured programming language	
2	Lec 4	Number Systems, Data types and their memory allocation,	
	Lec 5	Variables, Operators	
	Lec 6	variables, Operators	
3	Lec 7		Class Test 1
	Lec 8	Expressions, Basic Input/output; Control Structure	
	Lec 9		
4	Lec 10		
	Lec 11	Control structures: loop, While loop	
	Lec 12		
5	Lec 13		
	Lec 14	Nested loop, Functions	
	Lec 15		Class Tast 1
6	Lec 16		Class Test 2
	Lec 17	Arrays: Single, Multi-dimensional arrays	
	Lec 18		
7	Lec 19		
	Lec 20	Strings	
	Lec 21		
8	Lec 22		
	Lec 23	Pointers	
	Lec 24		
9	Lec 25	T 10 11 0 1	
	Lec 26	User defined data types: Structure, unions	Class Test 3
	Lec 27	Input output and files	
10	Lec 31		
	Lec 32	Object oriented Programming using C++: Introduction	
	Lec 33		
11	Lec 28		
	Lec 29	Classes and objects, Array of objects, Access specifiers	
	Lec 30		
12	Lec 34		
	Lec 35	Constructors, Abstraction, Encapsulation	
	Lec 36	, , , ,	
13	Lec 37		
10	Lec 38	Polymorphism	Midterm / Project
	Lec 39	Function and operator overloading	
14	Lec 40		
4.1		T 1 - 1	
	Lec 41	Inheritance	

ASSESSMENT STRATEGY

Components Grading			СО	Blooms Taxonomy
Continuous Test 1-3		20%	CO 1	C1, C2
Assessment	Presentation	5%	CO 3	C5, C6
(40%)	Midterm	15%	CO 2	C3, C4
Final	Final Exam		CO 2	C3- C6
I mai Lam		60%	CO 3	C3- C0
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

1. Teach Yourself C - Herbert Schidlt

REFERENCE BOOKS

- 1. Programming with C John Hubbard; Schaum"s Outlines.
- 2. Programming with C++ John Hubbard; McGraw-Hill Int. Edn
- 3. Teach Yourself C++ -- Herbert Schildt

REFERENCE SITE

--

5.3.1.2 CSE 292 Computer Programming Sessional

PRE-REQUISITE

Course Code: CSE 291

Course Title: Computer Programming

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To introduce the fundamental principles, mechanism of programming skills and develop basic programming skills to program design and development.

OBJECTIVE

- 1. To learn basic idea of programming languages.
- 2. To learn how to program with C/C++.
- 3. To learn how to think about the problems, their solutions and translating it to programming language.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to practice structured programming language and design algorithm for problems	C1, C2, A1, A2	-	2	1, 3	PR, T, Q
CO2	Be able to apply practical knowledge to develop basic programming skills with respect to program design and development	C3, C4, C6	-	3	2, 3, 6	F, T, ASG
CO3	Be able to demonstrate good programming style and discuss the impact of style on developing and maintaining programs	C4, C6, P6	-	5	4, 5	Q, ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Programming concepts, Codeblocks IDE, Input and Output: Standard input and output, Formatted input and output, Data Types, Basic Knowledge: Mathematical problems using printf, scanf, Operators, If, Else if, Switch, Loop, Nested Loop (for loop, while loop, do-while loop), function, arrays, pointers, structure unions. User defined data types. Input output and files. Object oriented Programming using C++: philosophy of object oriented programming (OOP), advantages of OOP over structured programming, classes and objects, access specifiers, static and non-static members, Array of objects, constructors, destructors, copy constructor, abstraction, encapsulation, polymorphism: operator overloading, abstract classes, virtual functions, overriding; inheritance: single and multiple inheritance.

SKILL MAPPING

No.	Canada I admin a Ontana	PROGRAM OUTCOMES (PO)											
	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to practice structured programming language and design algorithm for problems				1						2		3
CO2	Be able to apply practical knowledge to develop basic programming skills with respect to program design and development	3		3						3			
СОЗ	Be able to demonstrate good programming style and discuss the impact of style on developing and maintaining programs		3			2							

(3 – High, 2- Medium, 1-low)

JUSTIFICA	TION FOR	CO-PO MAPPING
Mapping	Level	Justifications
CO1-PO4	Low	For preparing valid algorithm, depth of investigation and experimentation is required
CO1-CO10	Medium	Through presentation, the communication skills will be developed.
CO1-PO12	High	Project submission will help to develop skill which will be beneficial for life time.
CO2-PO1	High	Achieving in-depth of knowledge on programming concepts and the features of a programming languages.
CO2-PO3	High	Developing and designing a proper solution for various problems
CO2-PO9	High	Group assignment will help to develop team coordination
CO3-PO2	High	In the process of maintaining programs intensive analysis skill will be achieved
CO3-PO5	Medium	For demonstrating good style modern tool usage would be must

TEACHING LEARNING STRATEGY Teaching and Learning Activities

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	-
Practical / Tutorial / Studio	63
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision	-
Assessment Preparations	-
Formal Assessment	
Continuous Assessment	4
Final Examination (online)	1.5 X 2=3
Total	70

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week	Topics
1	Basic I/O, Solving Mathematical problems, operators
2	If, Else if, Switch
3	Loop
4	Array, 2D Array
5	Function
6	Pointers
7	Online-1
8	User Defined Data Types: Structures, Unions
9	OOP Introduction, classes and objects, access specifiers (using C++)
10	Constructors, Destructors, Encapsulation
11	Polymorphism
12	Inheritance
13	Quiz, Project Submission
14	Online-2

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy
Quiz	10%	CO 1, CO 3	C1,C2, C4, C6, A1, A2, P6
Project	20%	CO 1	C1,C2 A1-A2
Class Performance (T)	20%	CO1, CO 2,	C1-C4, C6, A1-A2
Online Test-1 (F)	20%	CO 2, CO 3	C3, C4, C6, P6
Online Test-2 (F)	20%	CO 2, CO 3	C3, C4, C6, P6
Assignment	10%	CO 2, CO 3	C3, C4, C6, P6
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Teach Yourself C Herbert Schidlt
- 2. Programming with C John Hubbard; Schaum"s Outlines.

REFERENCE BOOKS

- 1. Programming with C++ John Hubbard; McGraw-Hill Int. Edn.
- 2. Teach Yourself C++ Herbert Schidlt
- 3. Sober Jonno Computer Programming Language C- Md Kamruzzaman Niton

5.4 Department of Mechanical Engineering

5.4.1 Level-2, Fall

5.4.1.1 ME 291 Principles of Mechanical Engineering

COURSE INFORMATION							
Course Code	: ME 291	Lecture Contact Hours	: 3.00				
Course Title	: Principles of Mechanical Engineering	Credit Hours	: 3.00				

PRE-REQUISITE

NA

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The main aim of this course is to introduce the students of biomedical engineering to basic concepts in mechanical engineering. These principles and concepts will be later used in courses in biomedical engineering ranging from biomechanics, biomaterials, biofluid mechanics, robotics and artificial organ development

OBJECTIVE

- 1. Be able to understand the basic concepts in solid mechanics
- 2. Be able to apply the concepts of solid mechanics to machine design and analysis
- 3. Be able to describe basic laws of thermodynamics with their applications
- 4. Be able to appreciate different control system used in robotics and automation industry

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the basic concepts in solid mechanics	C2	1	-	-	1	T, MID, F
CO2	Be able to describe basic laws of thermodynamics with their applications	C2	1	-	1	1	T,F
CO3	Be able to appreciate different control system using in robotics and automation industry	C2	1,2	1	1	1	T,F
CO4	Be able to apply the concepts of solid mechanics to machine design and analysis	C3	2	1	1	1	T, MID, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create
				I C3 – Evaluate	

COURSE CONTENT

The course covers basic theory in statics and solid mechanics including stress-strain analysis, bending, torsion, and different types of mechanical testing. These tests are discussed in the lights of machine design and analysis. Emphasis is given on machine failure. The syllabus further includes fundamental concepts of thermodynamics and thermal physics and control theory used in robotics and automation applications.

SKILL MAPPING

N C I C		PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basic concepts in solid mechanics	3											
CO2	Be able to describe basic laws of thermodynamics with their applications	3											
СОЗ	Be able to appreciate different control system used in robotics and automation industry	3	2										
CO4	Be able to apply the concepts of solid mechanics to machine design and analysis		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Introduction & Statics	
Lecture 1	Introduction to Mechanical Engineering for Biomedical	
	Engineers	
Lecture 2	Fundamentals of statics: Force, Moments, Static equilibrium	
Lecture 3	Stress: Normal and Shear stresses	CT – 1 and Midterm,
2	Statics	Final
Lecture 4	Strain: Normal and Shear strains	
Lecture 5	Hooke's Law for linear elastic material, Young' Modulus	
Lecture 6	Poisson's ratio and Bulk Modulus	
3	Stress-strain relationship and Mohr's Circle	
Lecture 7	Stress-strain relationship of materials	
Lecture 8	Stress Transformations and principal stresses	
Lecture 9	Introduction to Mohr's Circle	
4	Introduction to beams and support	

Lecture 10	Beams and support	
Lecture 11	Shear and bending moment diagrams	
Lecture 12	3 point bending test, Normal stresses in beams	
5	Bending and stress analysis	
Lecture 13	4 point bending tests	
Lecture 14	Moment of inertia	
Lecture 15	Stress analysis, Stresses in curved members	
6	Mechanical Design	
Lecture 16	Pressure vessels	751 L THE 1
Lecture 17	Column design and coupling	Midterm, Final
Lecture 18	Shock and Impact	
7	Machine Design	
Lecture 19	Fracture, fatigue and failure modes	
Lecture 20	Failure analysis and safety consideration	
Lecture 21	Revision	
	MIDTERM	
8	Introduction to Thermodynamics	
Lecture 22	Kinetic theory of gases and Maxwell's distribution of molecular	
	speeds	
Lecture 23	Mean free path, Brownian motion, Van Der Waal's equation of	
	state	
Lecture 24	First Law of thermodynamics and its applications, Reversible and	
	irreversible processes	CT – 2, FINAL
9	Second law of thermodynamics	
Lecture 25	Second Law of thermodynamics and its applications	
Lecture 26	Entropy and disorder	
Lecture 27	Carnot's cycle and Carnot's theorem	
10	Heat engines, AC and refrigeration	
Lecture 28	Efficiency of heat engines. Thermodynamic functions	
Lecture 29	Refrigeration and AC cycles	
Lecture 30	Humidity control, HVAC systems	
11	Control systems	
Lecture 31	Introduction to control systems and engineering, Modelling of	
	basic feedback systems	
Lecture 32	Simulation of basic feedback loop-based control systems	
Lecture 33	Block Diagrams and Transfer Functions for Control Systems	CT – 3, FINAL
12	Controller design and stability analysis	
Lecture 34	Design of PID controllers	
Lecture 35	Design of PLC controllers	
Lecture 36	Stability and Robustness of controllers	
13	Robotics and mechatronics	
Lecture 37	Mechanics of linkage systems	
Lecture 38	Basic Cartesian and rotational robots	
Lecture 39	Hydraulics and pneumatics powered artificial muscles	
14	Robotics and mechatronics	
Lecture 40	Automation and frequency response	IZINI A T
Lecture 41	Mechatronics subsystems: sensors and actuators, Signal analysis	FINAL
	and control	
Lecture 42	Modelling of dynamic mechatronic systems	
	FINAL EXAMINATION	

			CO	Blooms Taxonomy
Comp	onents	Grading		Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C2, C3
Assessment (40%)	Class Participation/ Assignment	5%	CO1, CO2, CO3, CO4	C2, C3
	Midterm	15%	CO1, CO2	C2, C3
			CO 1	C2
Eino1	Exam	60%	CO 2	C3
гшаг	Exam	0070	CO 3	C2
			CO 4	C3
Total	Marks	100%		
(CO = Course	e Outcome, C = 0	Cognitive Dom	nain)	
ГЕХТ ВООЬ	KS			
1. Introducti	ion to Mechanical	Engineering, I	Part 1, Hodder Education UK, 2009)
REFERENC	E BOOKS			

1. Introduction to Mechanical Engineering, Part 2, Hodder Education UK, 2009

REFERENCE SITE

_

CHAPTER 6

COURSE OFFERED BY BME DEPARTMENT

6.1 Core Course Offered

6.1.1 BME 101 Introduction to Biomedical Engineering

COURSE INFO	COURSE INFORMATION								
Course Code	: BME 101	Lecture Contact Hours	: 2.00						
Course Title	: Introduction to Biomedical Engineering	Credit Hours	: 2.00						

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers the following modules: Introduction to Biomedical Engineering, Basic Life Science, Biotechnology, Biomaterials, Tissue Engineering, Drug Development and Delivery, Nanotechnology, Biomechanics, Biomedical Implants and Braces, Biosignals, Bioinstrumentation, BioMEMs and biosensors, Biomedical Imaging, Biomedical Image processing, Computational Biology.

OBJECTIVE

- 1. Distinguish and identify key fields and research domains in the field of BME.
- 2. Understand the role of Biomedical Engineers in healthcare and society as a whole.
- 3. Understand how the development of biomedical technology, devices and instrumentation can enhance the quality and precision of healthcare for disease diagnosis, treatment, and prevention.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the role of Biomedical Engineers in healthcare and society as a whole	C2	1, 6	-	-	-	T, MID, F
CO2	Be able to identify key fields and research domains in the field of BME	C2	1	-	-	-	MID, F
CO3	Be able to analyze how the development of biomedical technology, devices and instrumentation can enhance the quality and precision of healthcare for disease diagnosis, treatment, and prevention	C4	2	-	-	-	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 – Apply	C4 - Analyze	C5 – Evaluate	C6 – Create

COURSE CONTENT

Introduction to Biomedical Engineering, Basic Life Science, Biotechnology, Biomaterials, Tissue Engineering, Drug Development and Delivery, Nanotechnology, Biomechanics, Biomedical Implants and Braces, Biosignals, Bioinstrumentation, BioMEMs and biosensors, Biomedical Imaging, Biomedical Image processing, Computational Biology.

SKILL MAPPING

No.	Course Learning Outcome				PR	.OGl	RAN	JO l	JTCO	MES	(PO)		
NO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the role of Biomedical Engineers in healthcare and society as a whole	3					3						
CO2	Be able to identify key fields and research domains in the field of BME	3											
CO3	Be able to analyze how the development of biomedical technology, devices and instrumentation can enhance the quality and precision of healthcare for disease diagnosis, treatment, and prevention		2										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY						
Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning						
Lecture	28					
Practical / Tutorial / Studio	-					
Student-Centred Learning	-					
Self-Directed Learning						
Non-face-to-face learning	28					
Revision of the previous and (or) subsequent lecture at home	14					
Preparation for final examination	14					
Formal Assessment						
Continuous Assessment	2					
Final Examination	3					
Total	89					

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Weeks	Topics	Assessment
1	Introduction to Biomedical Engineering	
Lecture 1	Motivation Course and Introduction	
Lecture 2	Careers in Biomedical Engineering, Current and Future Trends of	
	Biomedical Engineering: Bangladesh and International Perspective	
2	Introduction to Biomedical Engineering	
Lecture 3	Different fields of Biomedical Engineering, Guide to choosing a	
	major to specialize	
Lecture 4	Biomedical research facilities and institutions: Bangladesh and	
	International perspective, Societies, Websites	CT 1 LMC1
3	Basic Life Science	CT – 1 and Midterm,
Lecture 5	Introduction to the Chemical basis of life	Final
	Introductory Biochemistry	
Lecture 6	Introduction to nucleic acids and genes	
	Fundamentals of Molecular Biology	
4	Biotechnology	
Lecture 7	Introduction to Biotechnology in BME, Examples of DNA, RNA	
	& protein technology and biomedical applications,	
Lecture 8	Introductory Genetic Engineering, Advances in Genetic	
	Engineering in BME applications	
5	Biomaterials	
Lecture 9	Introduction to material science in Biomedical Engineering	
Lecture	Definition and types of Biomaterials	
Lecture 10	Biocompatibility: Why is it important?	
Lecture 10	Examples and applications of Biomaterials	
6	Tissue Engineering	
Lecture 11	Introduction to cell and tissue engineering and regenerative	
Lecture 11	medicine	
	Applications of Tissue Engineering	
Lecture 12	Functional Tissue Engineering	Midterm, Final
Lecture 12	Recent advances and future trends in Tissue Engineering and	
	Regenerative Medicine	
7	Drug Development and Delivery, Nanotechnology	
Lecture 13	Introduction to Drug Development and Delivery	
Lecture 13	Definitions of Pharmaceuticals and pharmacokinetics	
Lecture 14	Introduction to Nanotechnology	
Lecture 14	Nanotechnology in biomedicine	
	Nanomaterials used in BME: Examples and Application	
	MIDTERM	
8	Biomechanics, Biomedical Implants and Braces	
Lecture 15	Definition of Biomechanics	
	Classification of Biomechanics	
	Branches and application of Biomechanics	
Lecture 16	Introduction to implants and braces	
	Different types of Medical Braces	
9	Biosignals	
Lecture 17	Physiological origins of biosignals	CT – 2, FINAL
	Different signals generated in the human body	~, I II WIE
	Bioelectric phenomena	
Lecture 18	Basic Bioinstrumentation	
	Common Equipment used in medical facilities	
10	Bioinstrumentation	
Lecture 19	Introduction to Sensors, Transducers and Actuators	
Locidio 17	Introduction to Biomedical sensors	
	Substitution to Estimated believes	

Course Offered by BME Department

	Examples of Biosensors			
Lecture 20	Different types of biosensors			
	Applications of biosensors			
11	BioMEMs and biosensors, Biomedical Imaging			
Lecture 21	Introduction to MEMs and BioMEMs			
	BioMEMs applications and advances			
Lecture 22	Introduction to Biomedical Imaging			
	Common medical imaging modalities: X-ray, CT-scan, MRI,			
	Ultrasound, Nuclear Medicine (SPECT & PET)			
12	Biomedical Image processing and Computational Biology			
Lecture 23	Introduction to Image processing			
	The importance of image processing in diagnostics	CT – 3, FINAL		
	Examples of biomedical image processing			
Lecture 24	Introduction to Bioinformatics and Biostatistics			
	Examples of Computational Biology in BME applications			
13	Biomedical Optics and Lasers, Telemedicine			
Lecture 25	Introduction to Optics in BME			
	Application of optics in BME			
Lecture 26	Introduction to telehealth or e-health			
	Importance of Telemedicine			
14	Review Week			
Lecture 27	Review Class	-		
Lecture 28	Review Class			

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy
Components		Grading		Brooms Taxonomy
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3	C2, C4
	Class Participation	5%	CO2	C2
	Midterm	15%	CO1, CO2	C1, C2
Final Exam			CO 1	C2
		60%	CO 2	C2
			CO 3	C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. Introduction to Biomedical Engineering, John D. Enderle, Joseph D. Bronzino.

REFERENCE SITE

_

6.1.2 BME 104 CAD in Biomedical Engineering Sessional

COURSE INFORMATION						
Course Code	: BME 104	Lecture Contact Hours	: 3.00			
Course Title	: CAD in Biomedical Engineering Sessional	Credit Hours	: 1.50			
PRE-REQUISITE						

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

In this course, students will be taught the designing of 3D models with printed porotypes of devices and equipment for biomedical engineering applications using software packages.

OBJECTIVE

This course aims to introduce students to 3D drafting and modeling techniques in the context of biomedical engineering.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to draw 3D parts and assemblies according to technical specifications with realistic constraints.	С6	1, 5	-	-	5	T, Q, R,ASG
CO2	Be able to make 3D printed models following specified design requirements.	С6	1,2	-	1	5	PR, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 – Create
C1 Itellion	C2 Chathana	1 00 11001	C i i i i i i i i i i i i i i i i i i i	C5 L varaate	Co Create

COURSE CONTENT

Fundamental concepts of Orthographic views, 3D Isometric view, Isometric projection from orthographic views. Introduction to 2D drafting, Draw a 2D sketch of the isometric views of a complex structure, Converting 2D sketch to 3D bodies using extrude and revolve features, Generate the 3D part of a dental abutment, Make threads using the helix and spirals, and swept base/boss features, Generate the 3D part of a dental screw, Generation of planes at angles using sketches and surfaces as references, Create the model of a dynamic hip screw using the given dimensions of its cross-sections, Create complex thin models using surface tools boundary, trim, and thicken, Design a bone plate, Design and assemble the components of total hip implant part 1: Femoral hip stem and head, Design and assemble the components of total hip implant part 2: Polyethylene liner and Acetabular shell, and their assembly, Introduction to 3D printing technology, Development of a 3D printed prototype model of a biological structure.

SKILL MAPPING

No.	Course Learning Outcome				PF	ROGI	RAM	OU'	ГСОІ	MES	(PO)		
10.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to design 3D parts and assemblies												
CO1	according to technical specifications with	3				3							
	realistic constrains.												
CO2	Be able to create 3D printed models	3	3										
CO2	following specified design requirements.	3	3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35

30	, ,
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	10
Preparation for final examination	14
Formal Assessment	
Continuous Assessment	1
Presentation	0.25
Lab Test	2
Quiz	0.5
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Fundamental concepts of Orthographic views, 3D Isometric view,	
	Isometric projection from orthographic views, and 2D drafting.	
2	Draw orthographic views from the isometric view of complex	
	structures. Draw isometric views from orthographic views of complex	
	structures.	
3	Converting 2D sketch to 3D bodies using extrude and revolve features.	Report, Assignment, Lab
	Generate the 3D part of a dental abutment.	Test, Quiz, Viva
4	Make threads using the helix and spirals, and swept base/boss features.	
	Generate the 3D part of a dental screw.	
5	Generation of planes at angles using sketches and surfaces as references.	
6	Create the model of a dynamic hip screw using the given dimensions of	
	its cross-sections.	
7	Mid Lab Test	
	Midterm Break	
8	Create complex thin models using surface tools boundary, trim, and	
	thicken. Design a bone plate.	
9	Design and assemble the components of total hip implant part 1:	Report, Assignment, Lab
	Femoral hip stem and head.	Test, Quiz, Viva
10	Design and assemble the components of total hip implant part 2:	
	Polyethylene liner and Acetabular shell, and their assembly.	
11	Introduction to 3D printing technology, familiarization with slicing	Project, Presentation
	software, 3D printing prototype of a biological structure.	
12	3D Printed Final Project Presentation	
13	Final Lab Test	
14	Quiz and Viva	

ASSESSMEN	T STRATEGY			
			CO	Blooms Taxonomy
Comp	ponents	Grading		Bioonis Taxonomy
Continuous	Report/ Assignment	10%	CO1, CO2	C6
(20%)	Class Participation	10%	CO1, CO2	C6
	Lab Tests	40%	CO1, CO2	C6
Final Exam	Project	20%	CO2	C6
(80%)	Quiz	10%	CO1, CO2	C6
	Viva	10%	CO1, CO2	C6
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

_

REFERENCE SITE

-

6.1.3 BME 105 Human Anatomy

COURSE INFORMATION								
Course Code	: BME 105	Lecture Contact Hours	: 3.00					
Course Title	: Human Anatomy	Credit Hours	. 5.00					

PRE-REQUISITE

-

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers cells, tissues, organization and functions of tissues and organs of different physiological systems, organ damage and automated repairing system. Learning objectives will be achieved through a combination of lectures. In addition, students will participate in small group discussions of clinical case studies, make group presentations of topic appropriate biomedical devices, and prepare a term paper on the subject of their choice selected from a list of topics generated by the instructor.

OBJECTIVE

- 1. To provide a foundation in human anatomy appropriate for students of biomedical engineering
- 2. To analyze the structural composition of the human body from cellular to organ levels

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to describe the biochemical and structural organization of the body	C2	1	-	=	1	T, MID, F
CO2	Be able to understand the functions of the main organs of the body	C2	1	-	-	1	T, MID, F

Course Offered by BME Department

			C2	3	-	-	1	T, F
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG –								
ment; Pr – P	resentation; R - Report	t; F – Final Exa	am)					
emember	C2 – Understand	C3 - Apply	C4 - Ana	lyze	C5 – I	Evalua	te C	6 - Create
	and how the Complex Prob ment; Pr – P	and how they affect the function of Complex Problems, CA-Complex Ament; Pr – Presentation; R - Report	ment; Pr – Presentation; R - Report; F – Final Exa	and how they affect the function of the body Complex Problems, CA-Complex Activities, KP-Knowledge Proment; Pr – Presentation; R - Report; F – Final Exam)	and how they affect the function of the body Complex Problems, CA-Complex Activities, KP-Knowledge Profile, Tement; Pr – Presentation; R - Report; F – Final Exam)	and how they affect the function of the body Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; ment; Pr – Presentation; R - Report; F – Final Exam)	and how they affect the function of the body Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – I ment; Pr – Presentation; R - Report; F – Final Exam)	and how they affect the function of the body Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q - ment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Human cell: Structure of cell. Structure and functions of cell membrane and nucleus. Types of cellular organelles. Structure and functions of each organelle; Tissues: Types of tissues with their functions; Skeletal System: Components. Exoskeleton/endoskeleton. Bones of axial and appendicular skeleton. Organic and inorganic composition of bone. Functions of each composition. Effect of loss of Organic and inorganic composition. Classification of bones with example. Bones of different regions of the body. Functions of bone/skeleton Types of cartilage with example and functions; Joints: Definition, Classification of joints. Characteristic features of each type with example. Joints of thorax, upper limb, lower limb, Head-neck, vertebral column with types. Line of gravity. Weight transmission through the body; Muscle: Characteristic features and Functions of different types of muscles .Classification of skeletal muscles with example. Regional muscles: characteristic features and action of important muscle such as deltoid biceps brachii, triceps, rectus abdominis, gluteal muscles, calf muscles muscles of back of the trunk; Mediastinum: Definition, Division, contents of mediastinum; Circulatory System: types and characteristic features of each type of circulation; Cardiovascular system: parts and functions of cardiovascular system. Gross feature of pericardium, pericardial sac and heart. Conducting system of heart: location and functions; Lymphatic system: Parts and functions of lymphatic system; Respiratory System: Parts of different zones of respiratory tract. Gross features and functions of pleura and lungs. Differences between right and left principal bronchus. Structure and functions of respiratory membrane. Muscles of respiration; Digestive System: Parts of digestive system. Extension, termination and constrictions of oesophagus. Gross features and functions of different parts of digestive system. Gross features and functions of liver and pancreas. Parts of extra hepatic biliary apparatus; Urinary System: parts of urinary system. Gross features and functions of different parts of urinary system; Reproductive System: Parts of Female and male reproductive system and their functions; Nervous System: Brain: different parts of brain and their functions. Spinal cord: beginning, termination and supports. Cranial nerves: motor, sensory and mixed cranial nerves; Meninges: Different parts of meninges, spaces between the meninges with their contents; Cavities/ canals: contents of thoracic cavity, abdominal cavity, pelvic cavity, cranial cavity, orbit, vertebral canal; Ear: different parts of ear with their functions; Eye Ball: parts and functions of different layers of eyeball .Refractive media of eyeball; Integumentary System: Parts and functions of skin and skin appendages; Endocrine gland: definition, location, secretion and functions of endocrine glands. Differences between exocrine and endocrine glands.

SKILL MAPPING

No.	Course Learning Outcome				PR	.OGI	RAN	JO l	JTCC	MES	(PO)		
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to describe the biochemical and	3											
COI	structural organization of the body)											
CO2	Be able to understand the functions of the	3											
CO2	main organs of the body)											
	Be able to understand some basic												
CO3	pathologies and how they affect the			2									
	function of the body												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Course introduction	
Lecture 1	Introduction to Anatomy	
Lecture 2	Introduction to Living cells	
Lecture 3	Human cell: type, composition, Cell membrane.	
2	Cell Biology	
Lecture 4	Nucleus Chromosome & abnormalities.	
Lecture 5	DNA, RNA, Gene	
Lecture 6	Organelles-Type, Mitochondria, ER, Golgi, Lysosome	CT – 1 and Midterm,
3		Final
Lecture 7	Ribosome Cytoskeleton inclusions.	
	Tissues	
Lecture 8	Types of tissues with their functions, Epithelial tissue.	
Lecture 9	Connective tissue.	
4	Skeletal system	
Lecture 10	Components, types, Bones of axial & appendicular skeleton.	
	Bones - features, classification, composition, blood supply function.	
	Bones of different regions of the body.	
Lecture 11	Cartilage: features, types, distributions.	
Lecture 12	Joint: Definition, Classification, Example of joints in different	
	regions, stability of the joint.	
5	Muscular system	
Lecture 13	Types of muscles, Skeletal muscle.	
Lecture 14	Smooth & cardiac muscle.	
Lecture 15	Regional muscles: features & action	Midterm, Final
6	CVS	

Course Offered by BME Department

Lecture 16	Mediastinum	gjered by BML Department
Lecture 17	Cardiovascular system.	1
Lecture 18	Features of pericardium sac, Heart, Conducting system of heart.	-
7	Respiratory system.	1
Lecture 19	Parts of respiratory system, Trachea, Bronchus, Bronchial tree,	-
	Respiratory membrane, RDS.	
Lecture 20	Lungs, pleura, respiratory muscles.	1
	Lymphatic system	1
Lecture 21	Parts, functions, lymph nodes, spleen, lymphatic vessels.	1
	MIDTERM	1
8	Digestive system	
Lecture 22	Parts, extension, features, Oesophagus, Stomach, Intestine.	
Lecture 23	Liver, Biliary apparatus.	1
Lecture 24	Pancreas, Digestive glands.	1
9	Urinary system	1
Lecture 25	Parts, kidney.	
Lecture 26	Ureter, Urinary bladder, Urethra.	1
	Reproductive system	1
Lecture 27	Male genital system	1
10		1
Lecture 28	Female genital system.	CT – 2, FINAL
	Nervous system	1
Lecture 29	Brain - Parts	1
Lecture 30	Meninges, Spinal cord.	
11		1
Lecture 31	Cranial nerves. (1-6)	1
Lecture 32	Cranial nerves. (7-12)	
Lecture 33	Spinal nerves, Autonomic nervous system.	1
12	Cavities/Canals of the body	
Lecture 34	Thoracic, abdominal & pelvic cavities.	
Lecture 35	Cranial cavity. Orbit, vertebral canal.	
	Integumentary system.	1
Lecture 36	Skin	
13	Glands	
Lecture 37	Exocrine glands	CT – 3, FINAL
Lecture 38	Thyroid & parathyroid glands	1
Lecture 39	Pituitary glands	1
14	Sensory organs	1
Lecture 40	Eye	1
Lecture 41	Nose	1
Lecture 42	Ear	1
	FINAL EXAMINATION	•
ASSESSMEN	T STRATEGY	

Comp	onents	Grading	СО	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3	C2
(40%)	Class Participation	5%	CO2	C2
	Midterm	15%	CO1, CO2	C2
			CO 1	C2
Final	Exam	60%	CO 2	C2
			CO 3	C2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Essentials of Anatomy and physiology, by Valerie C. Scanlon and Tina Sanders.
- 2. Seeley's Essentials of Anatomy and physiology, by Cinnamone Vanputte, Jennifer Regan, Andrew Russo

REFERENCE BOOKS

Essentials of Human Anatomy Vol-1, 2, 3. A.k.Datta.

REFERENCE SITE

_

6.1.4 BME 201 Human Physiology

COURSE INFO	RMATION		
			: 3.00
Course Code Course Title	: BME 201 : Human Physiology	Lecture Contact Hours Credit Hours	: 3.00

PRE-REQUISITE

BME 105 – Human Anatomy

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers cell, tissues, homeostasis, functions of different physiological systems and their neural and hormonal regulation, contribution to disease development when these physiological functions are dysregulated.

OBJECTIVE

- 1. To introduce students to a systems approach to the normal physiological processes of the body to maintain homeostasis
- 2. To provide the foundation of information which will allow an increased understanding of the changes seen in pathological states studied further throughout the program
- 3. Biomedical engineers need to prepare their minds for analyzing, quantifying, thinking, and solving problems at the interface of engineering, medicine and biology. This course sets the basic concepts for future interfacing between engineering and physiology.

COUI	COURSE OUTCOMES & GENERIC SKILLS							
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods	
CO1	Be able to understand the functions of the main organs of the body	C2	1	-	-	1	T, MID, F	
CO2	Be able to understand some basic pathologies and how they affect the function of the body	C2, C4	1	-	-	1	T, MID, F	
СОЗ	Be able to explain and analyze the interface of Human biology and engineering	C2, C4	2	_	-	1	T, F	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 – Apply	C4 - Analyze	C5 – Evaluate	C6 - Create

COURSE CONTENT

Definition, goal & importance of physiology. Homeostasis: definition. Major functional systems, control systems of the body. Cellular Physiology and Blood. Composition and function of blood, Types of blood cell, Erythropoiesis, Anaemia, Phagocytosis, Hemostasis. Cardiovascular Physiology: Properties of cardiac muscle, Generation of cardiac impulse and its conduction in the heart, Cardiac cycle, heart sound, action potential of cardiac muscle, ECG. Gastrointestinal Physiology: Physiological anatomy of gastrointestinal (GI) tract. Local hormones of GIT: name, functions & regulation of secretion. Renal physiology: Kidney, functions of kidneys. Respiration: Mechanism, Pulmonary and Alveolar ventilation Pulmonary volumes and capacities and dead space, Respiratory unit and respiratory membrane, Diffusion of Gases through the respiratory membrane, Transport of Oxygen and Carbon dioxide in blood. Thermoregulation. Hormones: Definition, Classification, mechanism of action, regulation of secretion. Nervous system- Neuron- types, receptor and synapse, action potential of nerve fiber. Functional organization and functions of major levels of central nervous system

SKILL MAPPING

No.	Course Learning Outcome			PROGRAM OUTCOMES (PO)									
NO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the functions of the main organs of the body	3											
CO2	Be able to understand some basic pathologies and how they affect the function of the body	3											
CO3	Be able to explain and analyze the interface of Human biology and engineering		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	

Course Offered by BME Department

	55 7 1
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Course introduction	
Lecture 1	Motivation & introduction to Human Physiology	
Lecture 2	Organs of Physiological systems and functions	
Lecture 3	Engineering perspective to Human Physiology	
2	Cells differentiation and Homeostasis	
Lecture 4	Cell to cell interaction or Cell communication	
Lecture 5	Cell differentiation mechanisms	
Lecture 6	Feedback system in Homeostasis	CT – 1 and Midterm,
3	Tissue	Final
Lecture 7	Epithelial Tissue	
Lecture 8	Connective Tissue	
Lecture 9	Neural and Muscle tissue	
4	Blood	
Lecture 10	Composition and function of blood	
Lecture 11	Types of blood cell, Erythropoiesis	
Lecture 12	Anaemia, Phagocytosis, Hemostasis	
5	Cardiovascular Physiology	
Lecture 13	Properties of cardiac muscle and role in blood flow	
Lecture 14	Generation of cardiac impulse and its conduction in the heart,	
	Cardiac cycle, heart sound,	
Lecture 15	Action potential of cardiac muscle, ECG	
6	Nervous System	
Lecture 16	Classification of nervous system	Midterm, Final
Lecture 17	Neurons and Glial cells, Synapses	
Lecture 18	Action potential of nerve fiber	
7	Immune system	
Lecture 19	Cellular and humoral response to infection	
Lecture 20	T helper cell differentiation, regulation and function	
Lecture 21	Crosstalk between Nervous system and Immune system	

			MIDTERM			
8	Muscular S	ystem				
Lecture 22	Function and	structure of mus	scle			
Lecture 23	Neuromuscu	lar junction				
Lecture 24	Muscle cont	raction				
9	Respiratory	System				
Lecture 25		structure of Lun				
Lecture 26	Systemic and	d pulmonary resp	iration			
Lecture 27	Respiratory	regulation				
10	1 -	tinal Physiology	,			
Lecture 28			trointestinal (GI) tract			
Lecture 29	Local hormo			CT – 2, FINAL		
Lecture 30	Regulation of	f secretion				
11	Renal Syste					
Lecture 31		and function of k	Kidney			
Lecture 32		iltration rate (GF	-			
Lecture 33		n kidney function	<u>′</u>			
12	Endocrine S					
Lecture 34	Types of Gla	·				
Lecture 35	Types of Ho					
Lecture 36						
13		of hormone actionics and blood v				
Lecture 37		d functions of blo				
Lecture 38		properties of bloo				
Lecture 39			d pressure, flow and resistance.	CT – 3, FINAL		
14		ve System, Ear a				
Lecture 40		to reproductive s				
Lecture 41	Hearing med	-	<u> </u>			
Lecture 42	Vision mech					
			AL EXAMINATION	I		
ASSESSMEN	NT STRATEGY					
Com	oonents	Grading	CO	Blooms Taxonomy		
Comp	Class Test/	Grading				
	Assignment	20%	CO1, CO2, CO3	C2		
Continuous	1-3	2070	231, 232, 233	22		
Assessment	Class					
(40%)	Participation	5%	CO3	C2		
Midterm 15% CO1, CO2				C2		
	1,110,01111	1570	CO 1	C2		
Final	l Exam	60%	C2			
1 11101	- Lauin	0070	CO 2 C2 C2 C2			
Total	Marks	100%	003			
	e Outcome, C = (n)			
TEXT BOOK	· ·	Summer Domai	···,			

1. Essentials of Anatomy and physiology, by Valerie C. Scanlon and Tina Sanders.

REFERENCE BOOKS

1. Seeley's Essentials of Anatomy and physiology, by Cinnamone Vanputte, Jennifer Regan, Andrew Russo

REFERENCE SITE

-

6.1.5 BME 203 Biochemistry

COURSE INFO	RMATION		
			: 3.00
Course Code	: BME 203	Lecture Contact Hours	: 3.00
Course Title	: Biochemistry	Credit Hours	

PRE-REQUISITE

CHEM 103 – General Chemistry; CHEM 125 – Physical and Bio-organic Chemistry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to introduce students to structure and chemistry of different types of molecules and structures found in biological structures. Concepts in enzyme kinetics are covered in depth. Overview of molecules involved in genetics such as nucleic acid structures, and DNA and RNA replication steps are given. The metabolism and oxidation of polysaccharide, lipid, and protein are analyzed in detail. The generation and propagation of bioelectric potentials across membrane channels are also covered.

OBJECTIVE

- 1. To understand the basic concepts of enzyme kinetics
- 2. To describe the structure and mechanisms of nucleic acid, DNA, RNA, and genetic engineering
- 3. To explain and analyze the pathways of oxidation, energy transfer, and metabolism of energy sources and important biomolecules
- 4. To explain and characterize action potential generation and impulse propagation in membranes and nerve fibers

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand concepts of enzyme kinetics	C2	1	-	-	1	T, MID, F
CO2	Be able to remember the structure and chemistry of genetic material such as DNA	C1	1	-	-	1	MID, F
СОЗ	Be able to understand the processes involved in digestion and metabolism	C2	1	-	-	1	T, F
CO4	Be able to understand the concept of bioelectricity, membrane channels and the propagation of potentials	C2	1	-	-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create

COURSE CONTENT

ENZYMES KINETICS: Enzymes mechanism and activation energy; enzyme thermodynamics; kinetics and inhibition; Mikhaelis-Menten equation, inhibition, and regulation of enzyme activity

NUCLEIC ACID: nucleotides, Nucleotide Metabolism, DNA, RNA composition and simple structure; replication, transcription and translation, DNA repair and mutation, Recombination and Transposition, Genetic code and genetic engineering, RNA Synthesis and Regulation

VITAMINS AND COENZYMES.

Vitamins and coenzymes. Digestion of polysaccharides, lipids and proteins. Metabolism and energy transfer; Integration of Metabolism and Signal Transduction, glycolysis and oxidative phosphorylation; biological high-energy compounds. Oxidation of fatty acids and oxidative degradation of amino acids. Glucagenosis, Krebs Cycle, pyruvate dehydrogenase complex, cholesterol and steroid metabolism, Photosynthetic phosphorylation. Inter relationship and control metabolism. Some inborn errors of metabolism

BIOELECTRICITY: Introduction to Bioelectricity and Excitable Cells. Bioelectric potentials and currents: ionic composition of excitable cells, Nernst-Planck equation, membrane structure, Nernst potential, parallel-conductance model; membrane channels: channel structure, biophysical methods for measuring channel properties

SKILL MAPPING

No.	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand concepts of enzyme kinetics	3											
CO2	Be able to remember the structure and chemistry of genetic material such as DNA	3											
СОЗ	Be able to understand the processes involved in digestion and metabolism	3											
CO4	Be able to understand the concept of bioelectricity, membrane channels and the propagation of potentials	3											

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHED	V	erea by BME Department_
COURSE SCHED	ULE	
Week	Content	Assessment
1	Course introduction	Assessment
Lecture 1	Motivation & introduction to biochemistry	
Lecture 2	Introduction to enzymes kinetics	
Lecture 3	Enzymes mechanism and activation energy	
2	Enzyme kinetics	CT – 1 and Midterm,
Lecture 4	Enzyme thermodynamics	Final
Lecture 5	kinetics and inhibition	
Lecture 6	kinetics and inhibition	
3	Enzyme kinetics continued	
Lecture 7	Mikhaelis-Menten equation	
Lecture 8	inhibition of enzyme activity	
Lecture 9	regulation of enzyme activity	
4	Nucleic acid	
Lecture 10	Nucleotides, Nucleotide Metabolism	
Lecture 11		
Lecture 12	Composition of DNA and RNA, simple structure	
	Replication, transcription and translation	
5	Nucleic acid continued	
Lecture 13	Replication, transcription and translation	
Lecture 14	DNA repair and mutation	
Lecture 15	DNA repair and mutation	
6	Nucleic acid continued	
Lecture 16	Recombination and Transposition	Midterm, Final
Lecture 17	Genetic code and genetic engineering	,
Lecture 18	RNA Synthesis and Regulation	
7	Vitamins and coenzymes; Metabolism	
Lecture 19	Introduction to vitamins and their types	
Lecture 20	Digestion of polysaccharides, lipids, and proteins	
Lecture 21	Metabolism and energy transfer	
	MIDTERM	
8	Digestion and metabolism	
Lecture 22	Integration of Metabolism and Signal Transduction	
Lecture 23	Integration of Metabolism and Signal Transduction	
Lecture 24	Glycolysis and oxidative phosphorylation	
9	Energy transfer and phosphorylation	
Lecture 25	Glycolysis and oxidative phosphorylation	
Lecture 26	biological high-energy compounds	CT - 2, $FINAL$
Lecture 27	Oxidation of fatty acids and oxidative degradation of amino	
	acids	
10	Gluconeogenesis and Krebs cycle	
Lecture 28	Gluconeogenesis	
Lecture 29	Gluconeogenesis	
Lecture 30	Krebs Cycle	
11	Energy transfer and phosphorylation continued	

		ett of Biris septi. interit
Lecture 31	Pyruvate dehydrogenase complex	
Lecture 32	Cholesterol and steroid metabolism	
Lecture 33	Pentose phosphate pathway	
12	Metabolism control	CT – 3, FINAL
Lecture 34	Photosynthetic phosphorylation	
Lecture 35	Interrelationship and control metabolism	
Lecture 36	Some inborn errors of metabolism	
13	Bioelectricity	
Lecture 37	Introduction to Bioelectricity and Excitable Cells.	
Lecture 38	Bioelectric potentials and currents: ionic composition of	
	excitable cells	
Lecture 39	Nernst-Planck equation, membrane structure, Nernst potential	
14	Bioelectricity continued	FINAL
Lecture 40	Parallel-conductance model	FINAL
Lecture 41	membrane channels: channel structure	
Lecture 42	biophysical methods for measuring channel properties	
1		

FINAL EXAMINATION

ASSESSMENT STRATEGY

Comp	Components		Components Grading		CO	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2		
(40%)	Class Participation	5%	CO2	C1		
	Midterm	15%	CO1, CO2	C1, C2		
			CO 1	C2		
Eina!	Exam	600/	CO 2	C1		
Fillal	Exam 60%		CO 3	C2		
			CO 4	C2		
Total	Marks	100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Fundamentals of Enzyme Kinetics 4th edition, Athel Cornish-Bowden.
- 2. Lehninger Principles of Biochemistry- 4th Edition, by Albert L. Lehninger, David L. Nelson, and Michael M. Cox.

REFERENCE BOOKS

- 1. Harper's Illustrated Biochemistry- 28th Edition by Robert K. Murray, David A Bender, Kathleen M. Botham, Peter J. Kennelly, Victor W. Rodwell, P. Anthony Weil.
- 2. Bioimpedance and Bioelectricity Basics, S. Grimnes and O.G. Martinsen, Academic Press, 2000

REFERENCE SITE

6.1.6 BME 204 Biochemistry Sessional

COURSE INFORMATION								
Course Code	: BME 204	Lecture Contact Hours	: 3.00					
Course Title	: Biochemistry Sessional	Credit Hours	: 1.50					

PRE-REQUISITE

Course Code: BME 203 Course Title: Biochemistry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of biochemistry and associated laboratory techniques using experiments detecting biologically relevant substances such as glucose, cholesterol, and insulin.

OBJECTIVE

This course aims to enhance students' knowledge on the basic principles of biochemical reactions and their applications.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	PO	СР	CA	KP	Assessment Methods
CO1	Be able to analyze the content of different biochemicals such as carbohydrates, proteins, and lipis.	C4	2, 5	-	-	1	T, Q, R
CO2	Be able to analyze the quantity of glucose, creatinine, cholesterol, insulin, and cortisol in blood.	C4	2, 5	-	-	1	T, Q, R
СОЗ	Be able to apply laboratory techniques such as centrifugation, chromatography, spectrophotometry, and immunoassay.	С3	2, 5	-	-	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Detection of carbohydrate in an unknown solution using Molisch's Test, Qualitative analysis of protein content using Biuret Test, Qualitative test for detecting the presence of lipids, Estimation of glucose content using colorimetric analysis, Preparation of serum and plasma from blood by centrifugation, Determination of blood glucose levels using enzymatic spectrophotometric analysis, Estimation of blood cholesterol content, Estimation

of blood creatinine content, Separation of mixture components using high-performance liquid chromatography (HPLC), Measurement of insulin, Measurement of cortisol.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to analyze the content of different biochemicals such as carbohydrates, proteins, and lipis.		3			3							
CO2	Be able to analyze the quantity of glucose, creatinine, cholesterol, insulin, and cortisol in blood.		3			3							
CO3	Be able to apply laboratory techniques such as centrifugation, chromatography, spectrophotometry, and immunoassay.		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introduction to the course, laboratory rules, safety rules, and laboratory techniques. Introduction to ChemDraw	
2	Use of colorimeter to estimate concentrations of colored compounds	
3	Detection of carbohydrate in an unknown solution using Molisch's Test	Report, Lab Test, Quiz,
4	Detection of reducing sugars using Benedict's Test	Viva
5	Qualitative analysis of protein content using Biuret Test	
6	Qualitative analysis of protein content using Millon's Test	
7	Lab Quiz	
	Midterm Break	
8	Determination of blood glucose levels using enzymatic spectrophotometric analysis	
9	Preparation of serum and plasma from blood by centrifugation	Donast Lab Test Oviz
10	Preparation and visual examination of a blood smear	Report, Lab Test, Quiz, Viva
11	Counting RBCs and WBCs using a hematocytometer	viva
12	Separation of chemical constituents from a sample using thin line chromatography	
13	Identification of chemical constituents using high performance liquid chromatography (HPLC)	
14	Final lab test + viva	

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Comp	onents	Grading		j
Continuous	Report	20%	CO1, CO2, CO3	C4, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C3
Ei1 E	Lab Test	20%	CO1, CO2, CO3	C4, C3
Final Exam (60%)	Quiz	30%	CO1, CO2, CO3	C4, C3
	Viva	10%	CO1, CO2, CO3	C4, C3
Total Marks 100%			,	

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Lab Manual in Biochemistry, Immunology, and Biotechnology by Nigam, A & Ayyagari, A. 2008, McGraw Hill Education Publications
- 2. Biochemistry Laboratory: Modern Theory and Techniques (2nd Edition), by Boyer, RF. 2011, Prentice Hall Publications

REFERENCE SITE

_

6.1.7 BME 205 Biofluid Mechanics and Heat Transfer

COURSE INFORMATION								
Course Code	: BME 205 : Biofluid Mechanics and Heat Transfer	Lecture Contact Hours	: 3.00					
Course Title		Credit Hours	: 3.00					

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the topics/subtopics that include fluid continuum, forces acting on a fluid, Surface tension, Statics of fluids, manometers, fluids in motion, shear stress and classification of fluids, principles of continuity, conservations of mass, energy and momentum and their applications, laminar and turbulent flows and boundary layer, introduction to Navier Stoke equation, modes of heat transfer, heat transfer in living body, bioheat transfer modeling, temperature measuring devices.

OBJECTIVE

- 1. To understand basic laws of fluid mechanics.
- 2. To solve different fluid mechanics equations and apply them to real-world problems.
- 3. Apply principles of heat and mass transfer to basic engineering systems.
- 4. To analyze heat transfer by conduction, convection, and radiation.
- 5. To understand the working principle temperature measuring device.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to explain different equations in biofluid mechanics.	C2	1	1	-	1, 3	T, F
CO2	Be able to apply different laws of fluid mechanics to physiological flow systems.	СЗ	2	1, 3	-	1, 3	T, F
СОЗ	Be able to understand and explain different heat transfer mechanisms.	C2	1	1	-	1	MID, F
CO4	Be able to analyze basic heat transfer problems, occur in Biomedical Engineering field involving Conduction, Convection and Radiation for providing appropriate solutions	C4	2	1, 3	-	1, 3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

	C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
--	---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Concept of fluid continuum, forces acting on a fluid, Surface tension, Statics of fluids: equation of static equilibrium, manometers, forces on submerged surfaces; Fluids in motion: concept of shear stress and classification of fluids; Fluid flow in closed conduits; laminar and turbulent flow; friction factor; control volume analysis: balance of mass, momentum and energy; continuity equation; momentum equation; Bernoulli's principle; Newton's law of viscosity, Navier-Stokes equations, Exact solutions of Navier-stokes equations, Couette flow, Poiseuille flow, the Rayleigh problem.

Basic modes of heat transfer; Introduction to Heat Transfer in Biological System, steady-state heat conduction through a layered surface with different thermophysical properties; Effect of metabolism on heat transfer, transient (unsteady-state) heat conduction; Heat transfer with phase change; Different approaches in bioheat transfer modeling; Thermal regulation of human body; Theoretical determination of thermal properties for biomaterial and experimental techniques; Temperature measuring devices.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to analyze different equations in biofluid mechanics.	3											
CO2	Be able to apply different laws of fluid mechanics to physiological flow systems.		3										
СОЗ	Be able to explain heat and different heat transfer mechanisms.	3											
CO4	Be able to evaluate basic heat transfer problems occur in Biomedical Engineering field involving Conduction, Convection and Radiation for providing appropriate solutions.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Introduction to Fluid Mechanics	
Lecture 1	Fluid as a continuum	
Lecture 2	Introduction to shear stress and shear strain	
Lecture 3	Mechanical properties in physiological flow conditions	
2	Control Volume analysis	CT – 1, Final
Lecture 4	Control Volume, velocity field and flow rates	
Lecture 5	Fluid acceleration and its derivation	
Lecture 6	Fluid Statics	
3	Laws of conservation of Mass and Momentum	
Lecture 7	Conservation laws in fluid flow	
Lecture 8	Boundary conditions in fully formed flows	
Lecture 9	Derivation of Buoyancy equations	
4	Surface Tension	
Lecture 10	Surface tension in fluids	
Lecture 11	Surface tension in fluids	
Lecture 12	Surfactants and their roles in medicine and biology	
5	Newton's laws of viscosity and the Reynolds Number	
Lecture 13	Newton's laws of viscosity and different categories of fluid	
Lecture 14	Types of flows and Reynolds Number	
Lecture 15	Fluid flow in a rectangular cross-section	
6	Fluid flow in different cross-sections	Midterm, Final
Lecture 16	Fluid flow in a rectangular cross-section	
Lecture 17	Fluid flow in a cylindrical cross-section	
Lecture 18	Fluid flow in a cylindrical cross-section	
7	Principles in fluid mechanics	
Lecture 19	Bernoulli's principles	
Lecture 20	Navier-Stokes equation	
Lecture 21	Review Class	
	Midterm Break	
8	Modes of heat transfer	
Lecture 22	Overview of heat, relation between thermodynamic and heat	
	transfer	
Lecture 23	Conduction, Convection, and Radiation	
Lecture 24	Basic laws of heat conduction – Fourier's Law with derivation	
9	Thermal properties	
Lecture 25	Fourier's Law of conduction in different co-ordinate systems	CT – 2, Final
	and bioheat transfer in mammalian	
Lecture 26	Boundary conditions in heat transfer problems	
Lecture 27	Steady state heat conduction through a slab, layered slab with	
	different thermophysical properties (e.g. skin)	
10	Conduction	

	2011.20 33,70	rea by BME Department
Lecture 28	Steady state heat conduction through a slab, layered slab with different thermophysical properties (e.g. skin)	
Lecture 29	Thermal resistivity and modeling thermal resistance in different heat transfer problems	
Lecture 30	Steady state heat conduction through a cylinder and hollow cylinder	
11	Conduction and Thermoregulation	
Lecture 31	Effect of fur size in heat transfer with relation to mammal size The bio-heat transfer equation for mammalian tissue	
Lecture 32	Steady state heat conduction with internal heat generation	
Lecture 33	Principles of thermoregulation	
12	Heat Transfer through extended surfaces	CT – 3, FINAL
Lecture 34	Steady state heat transfer problem from extended surfaces:	
	different boundary conditions	
Lecture 35	Steady state heat transfer from extended surfaces: examples	
	mathematical and real-life	
Lecture 36	The bioheat equation and multimodal heat transfer problem	
13	Convection	
Lecture 37	The bioheat equation and multimodal heat transfer problem	
Lecture 38	Convection and thermal/velocity boundary layer	
Lecture 39	Local and average convection co-efficient	
14	Heat Transfer in phase change	
Lecture 40	Heat transfer with phase change	
Lecture 41	Freezing of pure water, solution, cells and tissues and thawing	
Lecture 42	Review Class	

ASSESSMENT STRATEGY

Comp	Components		СО	Blooms Taxonomy
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4
	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
			CO 1	C2
Final Exam		60%	CO 2	C3
		0076	CO 3	C2
			CO 4	C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

Biofluid Mechanics:

1. Applied Biofluid Mechanics, Lee Waite and Jerry Fine. ISBN -10: 0-07-147217-7

Heat Transfer:

1. Ashim K. Datta, Biological and Bioenvironmental Heat and Mass Transfer: Marcel Dekker, Inc., 2002.

REFERENCE BOOKS

Biofluid Mechanics:

1. A Brief Introduction to Fluid Mechanics, Young, Munson, and Okiishi; Fifth Edition

Heat Transfer:

1. Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer: John Wiley & Sons; 5th edition 2006

REFERENCE SITE

--

6.1.8 BME 206 Biofluid Mechanics and Heat Transfer Sessional

COURSE INFORMATION								
Course Code	: BME 206	Lecture Contact Hours	: 3.00					
Course Title	: Biofluid Mechanics and Heat Transfer Sessional	Credit Hours	: 1.50					

PRE-REQUISITE

Course Code: BME 205

Course Title: Biofluid Mechanics and Heat Transfer

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of fluid mechanics and heat transfer in the biological context using experimental and computational knowledge.

OBJECTIVE

This course aims to enhance students' knowledge on the basic principles of fluid mechanics and heat transfer solutions.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to analyze the different hemodynamic and fluid flow scenarios for accessing the physiological condition of human body.	C4	2		1	1	T, Q, R
CO2	Be able to analyze different fluid flow behavior in human body using software to evaluate and predict pathophysiological conditions.	C4, C5	5		1, 3	1, 2	T, Q, R, ASG

Course Offered by BME Department

1	T, Q, R								
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG –									
Assignment; Pr – Presentation; R - Report; F – Final Exam)									
luate C	6 - Create								

COURSE CONTENT

Bernoulli's theorem with a venturi tube, Friction loss in biological systems, Biomedical circulatory system in normal and pathological conditions, Rheological behavior of biological fluid analogs, Study of dialysis machine, Spirometric measurements of lung function test by determination of FVC, FEVs and MVV using the concept of volumetric flow rate, Analysis of intravascular and near-wall hemodynamics, Study of frictional flow, Burnt injury in blood-perfused skin, Vessel segmentation from CT image, Intra aneurysmal flow simulation.

SKILL MAPPING

No	No. Course Learning Outcome		PROGRAM OUTCOMES (PO)										
10.	Course Learning Outcome	1	1 2 3 4		4	5	6	7	8	9	10	11	12
CO1	Be able to analyze the different hemodynamic and fluid flow scenarios for accessing the physiological condition of human body.		3										
CO2	Be able to analyze different fluid flow behavior in human body to evaluate and predict pathophysiological condition.					3							
CO3	Be able to apply the concept of heat transfer for assessing burn injury.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25

Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Lecture Topics	Assessment
1	Introduction to fluid dynamics and associated software for fluid	
	dynamics modeling	
2	Analysis of stented artery based on the intra aneurysmal flow simulation	
3	Analysis of intravascular and near-wall hemodynamic of bifurcation	
	artery: An idealized and patient-specific study	Danant Assismment Lab
4	Segmentation of vessel with aneurysm from CT image using Materialize	Report, Assignment, Lab Test, Quiz, Viva
	MIMICS and 3MATIC	rest, Quiz, viva
5	Study of Bernoulli's theorem with a venturi meter	
6	Study of biomedical circulatory system in normal and pathological	
	conditions	
7	Lab Test 1	
	Midterm Break	
8	Fluid flow analysis of a dialysis machine	
9	Spirometry measurement of lung function test by determination of FVC,	Donart Lab Tast Ouiz
	FEVs and MVV using the concept of volumetric flow rate	Report, Lab Test, Quiz, Viva
10	Rheological behavior of biological fluid analogs	viva
11	Burnt injury in blood-perfused skin	
12	Review class/Practice session	
13	Lab Test 2	
14	Quiz and Viva	

ASSESSMENT STRATEGY

Components		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0076)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

Biofluid Mechanics:

1. Applied Biofluid Mechanics, Lee Waite and Jerry Fine. ISBN -10: 0-07-147217-7

Heat Transfer:

1. Ashim K. Datta, Biological and Bioenvironmental Heat and Mass Transfer: Marcel Dekker, Inc., 2002.

REFERENCE BOOKS

Biofluid Mechanics:

1. A Brief Introduction to Fluid Mechanics, Young, Munson, and Okiishi; Fifth Edition

Heat Transfer:

1. Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer: John Wiley & Sons; 5th edition 2006.

REFERENCE SITE

--

6.1.9 BME 207 Biomedical Instrumentation and Measurements

COURSE INFO	COURSE INFORMATION										
Course Code	: BME 207	Lecture Contact Hours	: 3.00								
Course Title	: Biomedical Instrumentation and Measurements	Credit Hours	: 3.00								

PRE-REQUISITE

EECE 191: Principles of Electrical Engineering, EECE 291: Electronic Circuits and Devices, BME 201: Human Physiology

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course is designed to give the basic concepts of Instrumentation involved in medical field and human physiology. In the course, students will be introduced to fundamentals of transducers and sensors, bio-signal measurements and concepts of the instrumentation related to biosignal measurements. The course covers the following modules: generalized medical instrumentation, transducers and sensors, bio amplifier, bio-signal recording systems, bio-signals and their measurement techniques, instrumentation of bio-signal measurements, and patient safety.

OBJECTIVE

- 1. To understand the basics of biomedical instrumentation.
- 2. To learn the principles of transducers and sensors.
- 3. To understand and apply various biomedical measurement techniques.
- 4. To analyze and design various biomedical instrumentation techniques.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the basics of Biomedical instrumentation and measurements.	C2	1	1	-	1	T, F
CO2	Be able to understand the principles of transducers and sensors.	C2	1	1	-	1	T, F
СОЗ	Be able to apply various biomedical instrumentation to analyze and solve biomedical problems.	C3, C4	2, 5	1	-	1, 3	MID, F
CO4	Be able to apply various biomedical measurement techniques.	СЗ	5	1, 3	-	1, 3	T, F

(CP- Complex Pro	blems, CA-Complex A	ctivities, KP-Kno	wledge Profile, T	- Test; PR - Project;	Q – Quiz; ASG –
Assignment; Pr – F	Presentation; R - Report	t; F – Final Exam)		
C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Fundamentals of Medical Instrumentation: Generalized Medical Instrumentation System, Classification of Biomedical Instruments, Performance requirements of Medical Instrumentation System, General static characteristics: precision, resolution, accuracy, uncertainty, sensitivity, repeatability, calibration, maintenance, reparability, etc., General dynamic characteristics; Design process of medical instruments, Commercial medical instrumentation development process; General Constraints in Design of Medical Instrumentation Systems, regulation of medical devices.

Principles of Transducers and Sensors: The principle, classification, characteristics of Transducers and sensors, Displacement, Position, Motion, Thermal, Pressure, Force, Photoelectric, Optical, Radiative, Ultrasonic, Electrochemical sensors, Biosensors

Biopotential and Electrodes: Laws of membrane biophysics: electrical properties of cells and electrical equivalent model for the cell membrane; action potential. Origin of Bioelectric Signals (ECG, EEG, EMG, EOG, ENG, MEG, etc.) and their properties; Biopotential Electrode: Principle, Construction, Circuit model, types, Electrode-Skin interface, Polarization, artefacts and reduction technique, Electrodes for bioelectric signals, Electrode Arrays, Microelectrodes

Recording Systems, Amplifiers and Signal Conditioning: Basic Recording Systems, General Considerations for Signal Conditioners, Preamplifiers: Differential Amplifier, Instrumentation Amplifier, Carrier Amplifiers, Chopper Amplifier, Isolation amplifier, Power Amplifier, Filters for biomedical applications, Constant Current Source, Current to Voltage Converter, Analog and Digital Recorders

Instrumentation and Measurements of Biomedical Parameters: Basic Instrumentation and Measurement of ECG, EEG, EMG, EOG, PPG and other biomedical recorders. Measurement of Heart Rate, Heart Rate Variability and Pulse rate, Measurement of Body Temperature, Measurements of Blood Pressure, sound, flow, and Volume, Measurements of the Respiratory System: Pressure, Gas-flow, Lung Volume, Gas Concentration, Measurement of Nerve conduction Velocity, Measurement of Bio-impedance, Electrical Impedance Tomography (EIT).

Patient Safety: Physiological Effects of Electricity, Important Susceptibility Parameters, Electric Shock Hazards: Macro and Micro, Basic Approaches to protection against shock, Isolation circuits and Isolation mechanism, Protection: Power Distribution and Equipment Design, Safety codes and Standards for Electromedical Equipment

SKILL MAPPING

	PROGRAM OUTCOMES (PO)												
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basics of Biomedical instrumentation.	3											
CO2	Be able to understand the principles of transducers and sensors.	3											
СОЗ	Be able to apply various biomedical instrumentation to analyze and solve biomedical problems.		3			3							
CO4	Be able to apply various biomedical measurement techniques.					3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Course Offered by BME Department

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Fundamentals of Medical Instrumentation	
Lecture 1	Introduction to Biomedical Instrumentation	
Lecture 2	Generalized Medical Instrumentation System. Classification of	
	Biomedical Instruments	
Lecture 3	General static characteristics: precision, resolution, accuracy,	CT – 1, Final
	uncertainty, sensitivity, repeatability, calibration, maintenance,	
	reparability, etc.	
2	Fundamentals of Medical Instrumentation	
Lecture 4	Generalized Dynamic Characteristics	
Lecture 5	Generalized Dynamic Characteristics	
Lecture 6	Design process of medical instruments, Commercial medical	
	instrumentation development process, Performance	
	requirements of Medical Instrumentation System.	
3	Principles of Transducers and Sensors	
Lecture 7	The principle, classification, characteristics of Transducers and	
	sensors	
Lecture 8	Displacement, Position, Motion Transducer	
Lecture 9	Thermal, Pressure, Force Transducer	
4	Physiological Transducers and Sensors	
Lecture 10	Photoelectric, Optical, Radiative Transducer	
Lecture 11	Ultrasonic, Electrochemical Transducer	
Lecture 12	Various Biosensors	
5	Bioelectric Signals and Electrodes	
Lecture 13	Biopotential, Laws of membrane biophysics: electrical	
	properties of cells and electrical equivalent model for the cell	
	membrane	
Lecture 14	Origin of Bioelectric Signals (ECG, EEG, EMG, EOG, ENG,	Midterm, Final
Lecture 15	MEG) and their properties	

6	Bioelectric Signals and Electrodes	ea by BME Department_
Lecture 16	Bio-potential Electrode: Principle, Construction, Circuit model,	
-	types	
Lecture 17	Electrode-Skin interface, Polarizations, Artefacts and	
	Interference	
Lecture 18	Electrodes for bioelectric signals. Electrode Arrays,	
2000010 10	Microelectrodes	
7	Recording Systems, Amplifiers and Signal Conditioning	
Lecture 19	Basic Recording Systems, General Considerations for Signal	
	Conditioners	
Lecture 20	Preamplifiers: Differential Amplifier, Instrumentation Amplifier	
Lecture 21	Carrier Amplifiers, Isolation amplifier, Driving Amplifier	
	Midterm Break	
8	Recording Systems, Amplifiers and Signal Conditioning	
Lecture 22	Sources of noise in low-level measurements and reduction	
- 	techniques	
Lecture 23	Filters for biomedical applications and Frequency Response	
Lecture 24	Analog and Digital Recorders	
9	Instrumentation and Measurements of Biomedical	
9	Parameters Parameters	CT – 2, Final
Lecture 25	Basic Instrumentation and Measurement of ECG	C1 2,1 mai
Lecture 26	Basic Instrumentation and Measurement of ECG	
Lecture 27	Basic Instrumentation and Measurement of PPG, Heart Rate, Heart Rate Variability.	
10	Instrumentation and Measurements of Biomedical	
	Parameters	
Lecture 28	Basic Instrumentation and Measurement of EMG	
Lecture 29	Measurement of Nerve conduction Velocity.	
Lecture 30	Basic Instrumentation and Measurement EEG.	
11	Instrumentation and Measurements of Biomedical	
	Parameters	
Lecture 31	Measurement of EOG and Other Biomedical Recorders	
Lecture 32	Measurements of Blood Pressure, sound, flow, and Volume.	
Lecture 33	, , , ,	
12	Instrumentation and Measurements of Biomedical	
	Parameters	
Lecture 34	Measurements of the Respiratory System: Pressure, Gas-flow,	CT – 3, FINAL
Lecture 35	Lung Volume, Gas Concentration	
Lecture 36		
13	Instrumentation and Measurements of Biomedical	
	Parameters	
Lecture 37	Constant Current Source, Current to Converter	
Lecture 38	Measurement of Bioimpedance	FINAL
Lecture 39	Electrical Impedance Tomography (EIT)	LIMAL
14		
	Electrical Safety	
Lecture 40	Physiological Effects of Electricity,	

	Important Susceptibility Parameters,
	Electric Shock Hazards: Macro and Micro
Lecture 41	Basic Approaches to protection against shock, Isolation circuits
	and Isolation mechanism
Lecture 42	Protection: Power Distribution and Equipment Design,
	Safety codes and Standards for Electromedical Equipment

ASSESSMENT STRATEGY

				Blooms Taxonomy
Comp	onents	Grading	CO	Brooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3	C2, C4
(40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C4
			CO 1	C2
Einal	Even	60%	CO 2	C2
Filiai	Final Exam		CO 3	C2
			CO 4	C4
Total	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P= Psychomotor domain, A= Affective Domain)

TEXT BOOKS

- 1. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGraw Hill.
- 2. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998.

REFERENCE BOOKS

- 1. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.
- 2. Leslie Cromwell, "Biomedical Instrumentation and Measurement", 1st edition, Pearson Education, New Delhi, 2007

REFERENCE SITE

__

6.1.10 BME 208 Biomedical Instrumentation and Measurements Sessional

COURSE INFORMATION							
Course Code	: BME 208	Lecture Contact Hours	: 3.00				
Course Title	: Biomedical Instrumentation and Measurements Sessional	Credit Hours	: 1.50				

PRE-REQUISITE

Course Code: BME 207

Course Title: Biomedical Instrumentation and Measurements

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of Biomedical Instrumentation and Measurements using experimental and computational knowledge.

OBJECTIVE

This course aims to enhance students' knowledge on the basic principles of Biomedical Sensor, Biomedical Instrumentation, and measurements, and develop biomedical instruments.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the principles of transducers and sensors.	C2	2	1	-	1	T, Q, R
CO2	Be able to apply various biomedical instrumentation to analyze and solve biomedical problems.	С3	2, 5	1, 3	-	1, 2	T, Q, R
СОЗ	Be able to apply various biomedical measurement techniques.	C4	5	1	-	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 -	- Understand C3 - A	Apply C4 - Analyzo	e C5 - Evaluate	C6 - Create
--------------------	---------------------	--------------------	-----------------	-------------

COURSE CONTENT

Introduction to Biomedical Instrumentation and Measurements, Intro to basic sensors, Basic amplifiers (Inverting and Non-Inverting), Differential Amplifier, Instrumentation Amplifier, Biomedical Filters and frequency response analysis, constant current source and current to voltage converter, Bio-impedance measurement, Isolation Circuitry and Patient Safety protocols, ECG Data acquisition, EMG Data acquisition, PPG Data acquisition circuit and measurement of heart rate. Measurement of Nerve conduction velocity

SKILL MAPPING

No	No. Course Learning Outcome		PROGRAM OUTCOMES (PO)										
140.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the principles of transducers and sensors.		3										
CO2	Be able to apply various biomedical instrumentation to analyze and solve biomedical problems.		3			3							
CO3	Be able to apply various biomedical measurement techniques.					3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Course Offered by BME Department

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introduction to Biomedical Instrumentation and Measurements sessional and Intro to basic sensors	
2	Implementation of amplifiers (Inverting and Non-Inverting), Differential Amplifier	
3	Implementation of Instrumentation Amplifier	Report, Assignment, Lab
4	Implementation of Biomedical Filters and frequency response analysis	Test, Quiz, Viva
5	Implementation of constant current source and current to voltage converter	
6	Design and Implementation of Bioimpedance measurement circuit.	
7	Implementation of Isolation Circuitry and Patient Safety protocols	
	Midterm Break	
8	Design and Implementation of an ECG Data acquisition circuit.	
9	Design and Implementation of an EMG Data acquisition circuit	
10	Design and Implementation of a PPG Data acquisition circuit and measurement of heart rate.	Report, Lab Test, Quiz, Viva
11	Measurement of Nerve conduction velocity	
12	Review class	
13	Lab Test	
14	Quiz and Viva	
ASSESSME	ENT STRATEGY	

Components Grading		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C3, C2
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C3, C2
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C3, C2
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C3, C2
(0070)	Viva	10%	CO1, CO2, CO3	C4, C3, C2
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGraw Hill.
- 2. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998.

REFERENCE BOOKS

- 1. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.
- Leslie Cromwell, "Biomedical Instrumentation and Measurement", 1st edition, Pearson Education, New Delhi, 2007

REFERENCE SITE

__

6.1.11 BME 301 Statistics and Numerical Methods for Biomedical Engineers

COURSE INFORMATION							
Course Code	: BME 301	Lecture Contact Hours	: 3.00				
Course Title	: Statistics and Numerical Methods for Biomedical Engineers	Credit Hours	: 3.00				

PRE-REQUISITE

Course Code: MATH 205

Course Title: Differential Equation, Laplace Transform and Fourier Transform

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To teach the students the basic concepts and principles of numerical methods and statistics. It is targeted to provide a basic foundation for mathematics areas such as various numerical approximations of linear equations and DEs etc. Finally, this course is designed to develop the capability of solving real- life problems through Numerical methods and giving statistical interpretation and comments.

OBJECTIVE

- 1. Be able to understand the basic knowledge of various numerical approximations for solving equations.
- 2. Be able to provide a statistical probability of any real-life problem.
- 3. Implement numerical methods and statistical concepts in solving different engineering problems.

COUI	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods		
CO1	Be able to understand different numerical methods.	C2	1	1		1	T, F, ASG		
CO2	Be able to identify and analyze statistical data and probability concepts.	C2	2	1		1,2	T, MT, F, ASG		
СОЗ	Be able to apply numerical methods, sampling theory and different statistical tests to solve real-world problems.	С3	5	1		1,2	MT, F		
	(CP- Complex Problems, CA-Complex	Activities, KP-k	nowled	ge Profil	e, T – Te	est; MT-	Midterm Exam;		

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; MT- Midterm Exam; ASG – Assignment; F – Final Exam)

COURSE CONTENT

Numerical Methods For Biomedical Engineering:

Numerical Solution of Algebraic and Transcendental Equations: Introduction, Bisection method, Newton-Raphson method. Solution of system of linear equations using direct and iterative method.

Interpolation: Finite differences, Forward and backward differences, Difference table, difference of polynomial. Newton forward and backward interpolation formula, Central and divided differences, Numerical Integration Numerical solution of ordinary differential equations.

Statistics:

Correlation: Scatter diagrams, Correlation co-efficient, Rank correlation, Correlation ratio, Theorems on correlations.

Regression Analysis: Linear regression, Equation of the line of regression, Regression co-efficient, Curve fitting, Method of least square.

Probability: Mathematical and statistical definitions, Additive and multiplicative rule of probability, Conditional probability, Baye's theorem, joint probability.

Random Variables: Discrete and continuous random variables, Probability mass function, Probability density function, Cumulative distribution functions, Mathematical expectation.

Discrete Probability Distribution: Binomial distribution, Negative binomial distribution, Geometric distribution, Poisson's distribution.

Continuous Probability Distribution: Normal distribution, Exponential distribution, Chi-square distribution, t and F- distributions.

Sampling Distribution: Population, Sample mean, Sample variance, Central limit theorem, Sampling distribution from a normal population.

Test of Hypothesis: Statistical hypothesis, Level of significance, Type I and Type II error, One tailed and two tailed tests, Tests for proportions.

Analysis of Variance: One way and Two classification of ANOVA

SKILL MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand different numerical methods.	3											
CO2	Be able to identify and describe statistical data and probability concepts.		3										
CO3	Be able to Apply numerical methods, sampling theory and different statistical tests to solve real-world problems.					3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Justification for CO-PO mapping:

Mapping Corresponding		Justifications				
	Level of					
	matching					
CO1-PO1(a)	3	The knowledge of mathematics has to be applied to understand differen				
		numerical methods in the field of engineering study.				
CO2-PO1(a)	3	In order to identify and describe statistical phenomena and probability				
		distribution, using the knowledge of mathematics and sciences is required.				
CO3-PO1(a)	3	Interpret various numerical methods and statistical phenomena to solve DEs				
		using them, the knowledge of mathematics is required.				

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Week 1	Numerical Analysis	тей бу БМЕ Беринтет
Class 1	Numerical Solution of Algebraic and Transcendental Equations:	
	Introduction	
Class 2	Bisection method	
Class 3	Newton-Raphson method	
Week 2	Numerical Analysis	CT 1
Class 4	Solution of system of linear equations using direct method	
Class 5	Solution of system of linear equations using iterative method	
Class 6	Interpolation: Finite differences, Forward differences	
Week 3	Numerical Analysis	
Class 7	Interpolation: Finite differences, backward differences	
Class 8	Central differences, Divided differences, Difference table	
Class 9	Central differences, Divided differences, Difference table	
Week 4	Numerical Analysis	
Class 10	difference of polynomial	
Class 11	Newton interpolation formula	CT 2
Class 12	Newton forward interpolation formula, Newton backward	
	interpolation formula	
Week 5	Numerical Analysis	
Class 13	Numerical Integration	
Class 14	Numerical solution of ordinary differential equations	
Class 15	Application of numerical methods in Biomedical Engineering	
Week 6	Statistics	
Class 16	Introduction to statistics, correlation: Scatter diagrams, Correlation co-	
	efficient	
Class 17	Rank correlation, Correlation ratio, Theorems on correlations.	
Class 18	Regression Analysis: Linear regression	
Week 7	Statistics	
Class 19	Least square method Equation of the line of regression	
Class 20	Regression co-efficient, Curve fitting	
Class 21	Probability: Mathematical and statistical definitions, Additive and	
***	multiplicative rule of probability	
Week 8	Statistics Control of the Police Property of	Mid
Class 22	Conditional probability, Joint Probability, Baye's theorem	Term
Class 23 Class 24	Conditional probability, Joint Probability, Baye's theorem Random Variables: Discrete and continuous random variables,	
Week 9	Random Variables: Discrete and continuous random variables, Statistics	
Class 25	Random Variable: Probability mass function	
Class 25	Probability density function, Cumulative distribution functions	
Class 20	Mathematical expectation.	
Week 10	Statistics	
Class 28	Discrete Probability Distribution: Binomial distribution,	
Class 29	Negative binomial distribution, Geometric distribution	
Class 30	Poisson's distribution.	

Class 31	Continuous Probability Distribution: Normal distribution:	CT 3
	Introduction	
Class 32	Continuous Probability Distribution: Normal distribution: Theory	
Class 33	Continuous Probability Distribution: Normal distribution: Example	
Week 12	Statistics	
Class 34	Exponential distribution, Chi-square distribution, t and F- distributions	
Class 35	Sampling Distribution: Population, Sample mean, Sample variance	
Class 36	Central limit theorem, Sampling distribution from a normal	
	population.	
Week 13	Statistics	
Class 37	Test of Hypothesis: Statistical hypothesis, Level of significance,	
	Type I and Type II error	
Class 38	One tailed and two tailed tests, Tests for proportions.	
Class 39	Effect size Cohen's D method	
Week 14	Statistics	
Class 40	Analysis of Variance (ANOVA): One tailed and Two tailed tests	
Class 41	Analysis of Variance: Example	
Class 42	Statistical applications in Biomedical Engineering	

ASSESSMENT STRATEGY

Components Grading		СО	Blooms Taxonomy		
1	Class Test/	8	CO1, CO2	C2	
Continuous Assessment (40%)	Assignment 1-3	20%	CO3	C3	
	Class Participation	5%	CO1, CO2, CO3	C2, C3	
	Midterm	15%	CO 2, CO3	C2, C3	
Final Exam			CO 1	C2	
		60%	CO 2	C2	
			CO 3	C2, C3	
Total Marks		100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Numerical analysis, Walter Gautschi
- 2. Probability and Statistics for Engineers, Scheaffer & McClave.

REFERENCE BOOKS

- 1. Introduction to Statistics for Biomedical Engineers, Kristina M. Ropella
- 2. Business Statistics, Gupta and Gupta.

REFERENCE SITE

--

6.1.12 BME 302 Statistics and Numerical Methods for Biomedical Engineers Sessional

COURSE INFO	COURSE INFORMATION									
Course Code Course Title	: BME 302 : Statistics and Numerical Methods for Biomedical Engineers Sessional		: 3.00 : 1.50							

PRE-REQUISITE

Course Code: BME 301

Course Title: Statistics and Numerical Methods for Biomedical Engineers

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

A biomedical engineer or researcher has to deal with different form of complex computational problems in his/her academic and professional life. Besides, from a large scale computation and analysis different forms of statistical decisions are to make by the biomedical engineers and researchers. To make these sorts of numerical and statistical computations simpler, faster, more efficient and accurate, learning about well-known statistical and numerical methods are obligatory. This laboratory coursework includes some of these statistical and numerical techniques like regression, curve fitting, interpolation, root finding, numerical calculus, solving linear and non-linear equations, higher order statistical measures, different statistical distributions, hypothetical tests, etc. This course covers the application of the statistical and numerical methods to solve the real-life problems using computer programming language like MATLAB, Python, R, etc.

OBJECTIVE

To develop students' skill of applying different statistical and numerical methods to solve real-life biomedical engineering problems utilizing the analytical tools like MATLAB, Python, R, etc.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to analyze and apply different statistical techniques to solve the related problems.	C3, C4	2, 5	-	-	1	T, Q, R
CO2	Be able to analyze and apply different numerical methods to solve real-life mathematical problems.	C3, C4	2, 5	-	-	1	T, Q, R
CO3	Be able to compare between different statistical and numerical techniques to conclude about the suitable technique for efficient and accurate results.	C5	2, 5	-	-	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Understand C3 - Apply C4 - Analyze C5 - Evaluate C6 - Create

COURSE CONTENT

Introduction to MATLAB/Python/R; Curve fitting problems and solutions using Linear Regression, Polynomial Regression, and Lagrange's Interpolation formula; Numerical root finding approach using Bisection Method, False Position Method, and Newton-Raphson Method; Numerical differentiation; Numerical integration; Finding the solutions of a linear system; Finding the concept of lower and higher order moments of random variables; Familiarization to the Probability, Conditional Probability, and Joint Probability, and the implementation techniques of Histogram, PDF's, CDF's of random variables, Binomial Distribution, Negative Binomial Distribution, Geometric Distribution, Normal Distribution and Poisson's distribution; Overview on the Statistical Hypothesis Test and execution of z-test, t-test, and Chi-Square (χ2) test for the statistically hypothetical decision making on Biomedical data; One-way and Two-way Analysis of Variances (ANOVA) for the statistical significance test of Biomedical data.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to analyze and apply different statistical techniques to solve the related problems.		3			3							
CO2	Be able to analyze and apply different numerical methods to solve real-life mathematical problems.		3			3							
CO3	Be able to compare between different statistical and numerical techniques to conclude about the suitable technique for efficient and accurate results.		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75

Viv		0.25			
Total		70			
TEACHING	G METHODOLOGY				
Lecture and	discussion, Co-operative and collaborative method, Problem based method				
COURSE S	CHEDULE				
Week	Lecture Topics	Assessment			
1	Introduction to Statistics and Numerical Analysis Tools (MATLAB/Python/R)				
2	Introduction to curve fitting problems related to Biomedical Engineering and their solutions using Linear Regression, Polynomial Regression, and Lagrange's Interpolation formula.				
3	Numerical approach to find the root of a non-linear equation using Bisection Method, False Position Method, and Newton-Raphson Method.	Report, Lab Test, Quiz,			
4	Numerical differentiation using Forward Difference and Backward Difference approaches.	Viva			
5	Numerical integration using Trapezoidal, Simpson's (1/3), and Simpson's (3/8) rules.				
6	Finding the solutions of a linear system (a set of equations with multiple variables) using Gauss-Jordan Elimination through Pivoting and Gauss-Siedel Iterative methods.				
7	Lab Quiz				
	Midterm Break				
8	Introduction to the random variables in biomedical engineering problems and the concept of method of moments to find lower and higher order moments of random variables.				
9	Familiarization to the Probability, Conditional Probability, and Joint Probability, and the implementation techniques of Histogram, PDF's, CDF's of random variables.				
10	Familiarization and Implementation of Binomial Distribution, Negative Binomial Distribution, Geometric Distribution, Normal Distribution and Poisson's distribution.	Report, Lab Test, Quiz, Viva			
11	Overview on the Statistical Hypothesis Test and execution of z-test, t -test, and Chi-Square (χ^2) test for the statistically hypothetical decision making on Biomedical data.				
12	A gentle introduction to the execution of One-way and Two-way Analysis of Variances (ANOVA) for the statistical significance test of Biomedical data.				
13	Final lab test				
14	Final Quiz + Viva				
ASSESSME	ENT STRATEGY				

				-
Components Grading		СО	Blooms Taxonomy	
Continuous	Report	20%	CO1, CO2, CO3	C4, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C3
Ei1 E	Lab Test	20%	CO1, CO2, CO3	C4, C3
Final Exam (60%)	Quiz	30%	CO1, CO2, CO3	C4, C3
(0070)	Viva	10%	CO1, CO2, CO3	C4, C3
Total	Marks	100%		,

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 3. Numerical Methods for Engineers by Steven C. Chapra & Raymond P. Canale. 2015 (Seventh Edition), McGraw Hill Education Publications
- 4. Statistics in MATLAB: A Primer By MoonJung Cho, Wendy L. Martinez. 2015 (First Edition), CRC Press.
- 5. Numerical and Statistical Methods for Bioengineering: Applications in MATLAB (Cambridge Texts in Biomedical Engineering) 1st Edition; by Michael R. King and Nipa A. Mody.

REFERENCE SITE

-

6.1.13 BME 303 Biomechanics

COURSE INFORMATION									
Course Code	: BME 303	Lecture Contact Hours	: 3.00						
Course Title	: Biomechanics	Credit Hours	: 3.00						

PRE-REQUISITE

ME 291: Principle of mechanical engineering

PHY 127: Structure of matter, Electricity, Magnetism, and Mechanics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the major topics/subtopics that include introduction to biomechanics, tissue mechanics, joint biomechanics, movement mechanics, dynamics to human motion, linear and angular kinematics, examples in biomechanics, modern kinematic measurement techniques, applications of human motion analysis, introduction to viscoelasticity.

OBJECTIVE

- 1. To describe the fundamental of biomechanics.
- 2. To Study the deformability, strength, viscoelasticity of bone and flexible tissues, modes of loading and failure.
- 3. To describe the types and mechanics of skeletal joints.
- 4. To describe movement precisely, using well defined terms (kinematics) and also to consider the role of force in movement (kinetics).
- 5. To teach students the unique features of biological flows, especially constitutive laws and boundaries.

6. To consider the mechanics of orthopedic implants and joint replacement, artificial heart valve, mechanical properties of cardiovascular and respiratory mechanics

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to explain the mechanics of moving systems and familiarity with human anatomy to competently analyze gross movement and dynamics of the human body.	C2	1	1	-	1	T, F
CO2	Be able to understand various properties of hard tissues (bone) & soft tissues (articular cartilage, tendons and ligaments) and identify the appropriate model to demonstrate mechanical behavior	C4	2	1	-	1, 3	T, F
CO3	Be able to analyze the biomechanics of different human joints and also the forces at a skeletal joint for various static and dynamic human activities.	C2	1	1	-	1, 3	MID, F
CO4	Be able to understand mechanics at the cellular and tissue levels and explain the role of mechanobiology in different diseases	C5	4	1	-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Kinematic and Kinetic Concepts:

Forms of motion, Standard reference terminology, Joint movement terminology, Force, moment, couples, loads on the human body, Equations of static equilibrium, Structural idealization applications in biomechanics, stress and strain analysis.

Muscle and Movement:

Skeletal muscle morphology, Isotonic versus isometric construction, Muscles constitutive modelling, whole muscle mechanics parallel versus pinnate muscle types, Factors affecting muscular force generation; Muscular strength, power, endurance; muscle and bone interactions.

Basic Statics and Movements at Specific Joints:

Shoulder and Shoulder Girdle; Elbow and Forearm; Wrist and Hand; Trunk and Spine; Hip, Knee, Ankle; Patterns of movement; Structural and Functional Analysis.

Linear and Angular Kinematics of Human Movement:

Overview of linear kinematics, Acceleration, Projectile motion analysis, Linear and angular motion relationship, Modern kinematics measurement techniques.

Linear and Angular Kinetics of Human Movement:

Kinetic law of motion, Angular analogues of Newton's law of motion, Modern kinetics measurement techniques, Application of human motion.

Human Movement in Fluid Medium:

Nature of fluid, Viscoelasticity, Buoyancy, Drag, Lift force, Propulsion in fluid medium.

SKILL MAPPING

Na	Course I comin a Outcome				PR	OGl	RAN	JO l	JTCC	MES	(PO)		
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to explain the mechanics of moving systems and familiarity with human anatomy to competently analyze gross movement and dynamics of the human body.	3											
CO2	Be able to understand various properties of hard tissues (bone) & soft tissues (articular cartilage, tendons and ligaments) and identify the appropriate model to demonstrate mechanical behavior	3											
CO3	Be able to analyze the biomechanics of different human joints and also the forces at a skeletal joint for various static and dynamic human activities.		3										
CO4	Be able to understand mechanics at the cellular and tissue levels and explain the role of mechanobiology in different diseases	3				1.						4.1:	

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

		ей бу БМЕ Дерантет
Week	Торіс	Assessment
1	Kinematic and Kinetic Concepts	
Lecture 1	Forces, moments, couples, mechanical loads and effects of loading	
Lecture 2	Forms of motion, Anatomical reference position, planes and axes, Joint movement terminology	CT – 1, Final
Lecture 3	Equations of static equilibrium and structural idealization applications in biomechanics	
2	Human Motion Analysis	
Lecture 4	Modern kinematic measurement techniques	
Lecture 5	Applications of human motion analysis	
Lecture 6	The human gait cycle	
3	Linear kinematics	
Lecture 7	Rigid body mechanics	
Lecture 8	Linear kinematics in human motion: measurements and analysis	
Lecture 9	Joint kinematics and Euler's angles	
4	Angular Kinematics	
Lecture 10	Angular kinematics relationships, comparison between angular	
	and linear kinematics	
Lecture 11	Angular kinematics of different joints	
Lecture 12	Kinetics in human motion – center of pressure, and ground	
	reaction forces	
5	Kinetics in human motion	
Lecture 13	Analysis of ground reaction forces in different axis	
Lecture 14	Forces and moments determination in kinetic studies	Midterm, Final
Lecture 15	Determination of joint moments and power	
6	Musculoskeletal System	
Lecture 16	Review: stress-strain analysis of materials	
Lecture 17	Introduction to musculoskeletal system- bone anatomy and architecture	
Lecture 18	Mechanical properties of bone, fracture mechanics and healing	
7	Muscles and Movement	
Lecture 19	Skeletal muscle morphology and architecture	
Lecture 20	Isotonic versus isometric contraction	
Lecture 21	Muscles constitutive modelling, Whole muscle mechanics	
	parallel versus pinnate muscle types	
	Midterm Break	
8	Introduction to Joints	
Lecture 22	Joint – structure and properties	
Lecture 23	Joint – types and movement	
Lecture 24	Structure, movement and loads on the shoulder	
9	Human Joint Articulation	
Lecture 25	Joint Architecture, stability and flexibility	
Lecture 26	Common Joint injuries and introduction to the biomechanics of	CT – 2, Final
	human upper extremity	

Lecture 27	Structure, movement and loads on the shoulder	, <u> </u>
	·	
10	Joint Movement Analysis Structure, movement and loads on the elbow and wrist	
Lecture 28		
Lecture 29	Structure, movement and loads on the hip, knee and ankle	
Lecture 30	Problem solving	
11	Joint Movement Analysis of Spine	
Lecture 31	Stress relaxation properties of articular cartilage	
Lecture 32	Structure, properties and functions of spine	
Lecture 33	Spine mechanics and movement	
12	Mechanics of tendons, ligaments and articular cartilage	
Lecture 34	Structure and organization of tendons and ligaments	
Lecture 35	Mechanical and viscoelastic properties of tendons and ligaments	
Lecture 36	Structure, function and mechanical properties of articular	CT – 3, FINAL
	cartilage	
13	Introduction to cell mechanics and mechanobiology	
Lecture 37	Overview of multi-scale mechanobiology	
Lecture 38	Cell/tissue mechanics – implications in development and disease	
Lecture 39	Cell/tissue mechanics – implications in development and disease	THALAT
14 Review Class		FINAL
Lecture 40	Single cell and bulk tissue mechanical measurements systems	
Lecture 41	Daview and Mathematical machine solving	
Lecture 42	Review and Mathematical problem solving	
	<u> </u>	

ASSESSMENT STRATEGY

C		C 1:	СО	Blooms Taxonomy
Components		Grading		
Continuous Assessment (40%)	Class Test/	2007	001 002 002	62 64 65
	Assignment 1-3	20%	CO1, CO2, CO3	C2, C4, C5
	Class Participation	5%	CO3	C2
	Midterm	15%	CO3	C2
			CO 1	C2
Final	Exam	60%	CO 2	C4
Tillal	L'Adili	0070	CO 3	C2
			CO 4	C5
Total Marks 100%		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Susan J. Hall, Basic Biomechanics, McGraw Hill, Sixth Edition.
- 2. Emico okuno, Luciano Fratin, Biomechanics of the Human Body, Springer.

REFERENCE SITE

--

6.1.14 BME 304 Biomechanics Sessional

Course Code : BME 304 : Biomechanics Sessional Credit Hours Credit Hours

PRE-REQUISITE

Course Code: BME 303 Course Title: Biomechanics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of experimental analysis and computational techniques to the biomechanics of the human body.

OBJECTIVE

This course aims to introduce students to the generation and analysis of biomechanical models and data.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome T		РО	СР	CA	KP	Assessment Methods
CO1	Be able to analyze the electromyography signal and mechanics of muscle contraction and joints.	C4	2, 5	-	1	1	T, Q, R
CO2	Be able to analyze the linear and angular kinetics and kinematics of a body in motion.	C4	2, 5	-	1	1	T, Q, R
CO3	Be able to evaluate the computational model of a body in motion.	C5	2, 5	-	1,3	2	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create
01 1101111011		1	0. 111101720		00 010000

COURSE CONTENT

Introduction to skeletal biomechanics, The study of muscular contraction using electromyography, The study of joint biomechanics, Linear Kinematics of an object in motion and total body center of mass determination, Introduction to linear kinetics and analysis of vertical ground reaction force, Introduction to angular kinematics and range of motion, Creating and simulating the computational model of a dynamic body in motion, Biomedical Orthosis/ Prosthesis design & simulation, Study of Ankle Injury Using OpenSim (Both Free Fall & AFO Assisted), Creating and simulating the computational model of a static and dynamic body in motion

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to analyze the electromyography signal and mechanics of muscle contraction and joints.		3			3							
CO2	Be able to analyze the linear and angular kinetics and kinematics of a body in motion through experimental and computational models		3			3							
СОЗ	Be able to evaluate orthosis/prosthetics through computational solid dynamics		3			3							
CO4	Be able to evaluate the computational model of a body in motion		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Lecture Topics	Assessment
1	Introduction to skeletal biomechanics	
2	The study of muscular contraction using electromyography	
3	Linear Kinematics of an object in motion and total body center of mass determination	D (11T)
4	Introduction to linear kinetics and analysis of vertical ground reaction force	Report, Lab Test, Quiz, Viva
5	Introduction to angular kinematics and range of motion	
6	Analysis of kinetics & kinematics data part 1	
7	Analysis of kinetics & kinematics data part 2	
	Midterm Break	
8	Mid Lab Test	
9	Biomedical Orthosis/ Prosthesis design & simulation	
10	Study of Ankle Injury Using OpenSim (Both Free Fall & AFO Assisted)	Report, Lab Test, Quiz,
11	Creating and simulating the computational model of a static body at rest	Viva
12	Creating and simulating the computational model of a dynamic body in motion	
13	Final Lab Test	
14	Quiz and viva	

ASSESSMENT STRATEGY

Comr	Components Grading		СО	Blooms Taxonomy
Components Grading		Grading		
Continuous	Report	20%	CO1, CO2, CO3, CO4	C4, C5
Assessment (30%)	Class Participation	10%	CO1, CO2, CO3, CO4	C4, C5
Final Exam	Lab Test	35%	CO1, CO2, CO3, CO4	C4, C5
(70%)	Quiz	25%	CO1, CO2, CO3, CO4	C4, C5
(, 5, 6)	Viva	10%	CO1, CO2, CO3, CO4	C4, C5
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Duane Knudson, Fundamentals of Biomechanics, Second Edition, Springer publication, 2007 (UNIT IV)
- 2. Donald R. Peterson and Joseph D. Bronzino, Biomechanics Principles and applications, CRC Press, Taylor & Francis Group, LLC, 2008 (UNIT II, III)

REFERENCE SITE

https://simtk-confluence.stanford.edu:8443/display/OpenSim/Building+a+Dynamic+Walker+in+Matlab

6.1.15 BME 305 Biomedical Signal Processing

COURSE INFORMATION										
Course Code Course Title	: BME 305 : Biomedical Signal Processing	Lecture Contact Hours Credit Hours	: 3.00 : 3.00							

PRE-REQUISITE

Math 205: Differential Equation, Laplace Transform and Fourier Transform

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to introduce the fundamental concepts and methods for the characterization and analysis of digital signal and systems with a particular emphasis on the understanding of the basic Biomedical signals and systems.

OBJECTIVE

- 1. To provide the knowledge about the different processing techniques regarding signal and systems
- 2. To equip students skilled to apply the knowledge of signal processing to solve the real life problems related to Biosignal.

COURSE OUTCOMES & GENERIC SKILLS

No.]		РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand signals in the time, frequency, Laplace, and Z domains	C2	1	1	-	1,3	T, F
CO2	Be able to comprehend the fundamental signal processing techniques	C2	1	1,3	-	1,3	T, F
СОЗ	Be able to acquire popular biomedical signals and their fundamental features'	C2	2	1	-	1	MID, F
CO4	Be able to design and analyze the basic processing techniques for the Biomedical signals	C3, C4	3	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Signal and System: Linearity of System, Classification and properties of signals, Common signals in engineering, Continuous-Time (CT) and Discrete-Time (DT) signal and system, Quantization, Analog to digital conversion of signal. Modeling of Signals and Systems: Impulse Response, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) of Discrete-Time Systems, Difference Equation, Convolution, Correlation, Covariance, Transient and Steady-state Response. Signal Transformation: Discrete Fourier Transformation (DFT), Fast Fourier Transformation (FFT), Inverse FFT, Z-Transformation, Inverse Z-Transformation. Randomness and Estimation of Signals: Linear Time Invariant (LTI) system, Stationarity and Ergodicity, Power Spectral Density, Frequency and Power Spectrum.

Introduction to Biosignals: Origins, properties and suitable models of popular biosignals, Objectives and challenges of Biosignal Analysis; Steps of Biosignal Processing. **Noise** and **Filters:** Noise Models, Averaging filters, Design and

principles of Wiener Filter, FIR and IIR filters. **Biomedical Signal Processing:** Spectral analysis of ECG, EEG, EMG, and EOG signals, Case study on ECG and EMG signals, Introduction to Feature Extractions and Classification.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand signals in the time, frequency, Laplace, and Z domains	3											
CO2	Be able to comprehend the fundamental signal processing techniques	3											
СОЗ	Be able to acquire popular biomedical signals and their fundamental features'		3										
CO4	Be able to design and analyze the basic processing techniques for the Biomedical signals			3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Signal and System	
Lecture 1	Linearity of System, Classification and properties of signals,	
	Common signals in engineering	
Lecture 2	Continuous-Time (CT) and Discrete-Time (DT) signal and	
	system	
Lecture 3	Quantization, Analog to digital conversion of signal	
2	Modeling of Signals and Systems	CT – 1, Final

Course Offered by BME Department

Lecture 4	Impulse Response	
Lecture 5	Finite Impulse Response (FIR) of Discrete-Time Systems	
Lecture 6	Infinite Impulse Response (IIR) of Discrete-Time Systems	
3	Modeling of Signals and Systems	
Lecture 7	Difference Equation	
Lecture 8	Convolution	
Lecture 9	Correlation, Covariance, Transient and Steady-State Response	
4	Signal Transformation	
Lecture 10	Discrete Fourier Transformation (DFT)	
Lecture 11	Fast Fourier Transformation (FFT)	
Lecture 12	Fast Fourier Transformation (FFT)	
5	Signal Transformation	
Lecture 13	Inverse FFT	
Lecture 14	Z-Transformation	
Lecture 15	Z-Transformation	
6	Randomness of Biosignals	Midterm, Final
Lecture 16	Z-Transformation	
Lecture 17	Inverse Z-Transformation	
Lecture 18	Inverse Z-Transformation	
7	Randomness of Biosignals	
Lecture 19	Linear Time-Invariant (LTI) system, Stationarity and	
Lecture 19	Ergodicity,	
Lecture 20	Frequency and Power Spectrum	
Lecture 21	Frequency and Power Spectrum	
Lecture 21	Midterm Break	
8	Introduction to Biosignals	
Lecture 22	Origins, properties and suitable models of popular biosignals	
Lecture 23	Objectives and challenges of Biosignal Analysis	
Lecture 24	Steps of Biosignal Processing	
9	Noise and Filters	
Lecture 25	Noise Model	
		CT – 2, Final
Lecture 26 Lecture 27	Averaging filters	C1 2,1 mai
	Averaging filters	
10	Time Domain Filters	
Lecture 28	Design and principles of Wiener Filter	
Lecture 29	Design and principles of Wiener Filter	
Lecture 30	FIR filters	
11	Digital Filters	
Lecture 31	FIR filters	
Lecture 32	Fundamental Design of Window-based FIR filter	
Lecture 33	Fundamental Design of Window-based FIR filter	
12	Digital Filters	
Lecture 34	IIR Filter design	
Lecture 35	IIR Filter design	CT 2 EINAI
Lecture 36	Applications of IIR Filters in Biosignals	CT – 3, FINAL
13	Biomedical Signal Processing	FINAL

Lecture 37	Spectral analysis of ECG and EEG signals
Lecture 38	Spectral analysis of EMG and EOG signals
Lecture 39	Case study on ECG and EMG signals
14	Biomedical Signal Processing
Lecture 40	Case study on ECG and EMG signals
Lecture 41	Introduction to Feature Extractions and Classification
Lecture 42	Introduction to Feature Extractions and Classification

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy		
Components		Grading	20	Diodins Taxonomy		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C3		
(40%)	Class Participation	5%	CO3	C2		
	Midterm	15%	CO2	C3		
	Final Exam 60%				CO 1	C2
Final			CO 2	C3		
Fillat			CO 3	C2		
			CO 4	C4		
Total Marks		100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Emmanuel Ifeachor and Barrie Jervis, "Digital Signal Processing: A Practical Approach," Second Edition, Pearson Publications, 2002.
- 2. S. R. Devasahayam, "Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling," Second Edition, Springer Publication, 2013.

REFERENCE BOOKS

- K J Blinowska and J Zygierewicz, "Practical Biomecial Signal Analysis Using MATLAB," CRC Press, 2012.
- 2. Robert B. Northrop, Signals and Systems in Biomedical Engineering, CRC Press, 2003

REFERENCE SITE

6.1.16 BME 306 Biomedical Signal Processing Sessional

COURSE INFORMATION						
Course Code	: BME 306	Lecture Contact Hours	: 3.00			
Course Title	: Biomedical Signal Processing Sessional	Credit Hours	: 1.50			
PRE-REQUISI BME 305: Biom	TE edical Signal Processing					

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to prepare students to apply the knowledge of digital signal processing to apply to Biomedical signals for processing and finding the hidden information inside the Biosignals.

OBJECTIVE

- 1. To perform different signal processing algorithms and techniques to process the Biomedical signals
- 2. To apply the knowledge of signals processing techniques for the real-life problems regarding the Biomedical signals

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the signal processing related problems and relevant solution techniques in biomedical signals	C2	2		1	1	T, Q, R
CO2	Be able to apply the theoretical knowledge of signal processing and analyze the biomedical signals	C3, C4	2, 5		1, 3	1, 2	T, Q, R, ASG
СОЗ	Be able to evaluate the meaningful information from the real-life biomedical signals	C5	2, 5		1	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Sampling, quantization, and representation of different Biosignals, Finite and infinite response determination of a signal, Convolution and its application, Correlation and Covariance of signals with its applications, Determination of DFT, FFT, PSD of the Signal, Z-transformation and inverse Z-transformation, Wiener Filter, Window-based FIR filter, IIR filter, Linear transformation.

SKILL MAPPING

No. Course Learning Outcome			PROGRAM OUTCOMES (PO)										
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the signal processing related problems and relevant solution techniques in biomedical signals		3										
CO2	Be able to apply the theoretical knowledge of signal processing and analyze the biomedical signals		3			3							
СОЗ	Be able to evaluate the meaningful information from the real-life biomedical signals		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	7				
Practical / Tutorial / Studio	35				
Student-Centered Learning	-				
Self-Directed Learning					
Non-face-to-face learning	-				
Revision of the previous and (or) subsequent lecture at home	15				
Preparation for final examination	10				
Formal Assessment					
Continuous Assessment	1				
Lab Test	1				
Quiz	0.75				
Viva	0.25				
Total	70				

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Lecture Topics	Assessment
1	Introductory Practice on the Fundamentals of Signal Processing in	
	Matlab programming software	
2	Experiment on sampling, quantization, and representation of different	Report, Assignment, Lab
	Biosignals	Test, Viva
3	Experiment on the finite and infinite response determination of a signal	
4	Experiment of Convolution and its application in Biosignal Processing	

		, , , , , , , , , , , , , , , , , , ,
5	Investigation on Correlation and Covariance of signals with its applications in Biosignals	
6	Determination of DFT, FFT, PSD of a Biosignal	
7	Experiment on the utilization of Z-transformation and inverse Z-transformation in Biosignal processing	
	Midterm Break	
8	Designing a Wiener Filter to remove noises from Biosignals	
9	Designing window-based FIR filter for low pass, high pass, and band-pass filters	Report, Lab Test, Quiz, Viva
10	Designing IIR filter for low pass, high pass, and band-pass filter	viva
11	Experiment on the linear transformation of Biosignals	
12	Evaluation of the signal processing-based Project given to the students	
13	Lab Test	
14	Quiz and Viva	

ASSESSMENT STRATEGY

				-				
Components		Grading	СО	Blooms Taxonomy				
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3				
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3				
E:1 E	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3				
Final Exam (60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3				
(0070)	Viva	10%	CO1, CO2, CO3	C4, C5, C3				
Total Marks		100%						

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Emmanuel Ifeachor and Barrie Jervis, "Digital Signal Processing: A Practical Approach," Second Edition, Pearson Publications, 2002.
- 2. K J Blinowska and J Zygierewicz, "Practical Biomedical Signal Analysis Using MATLAB," CRC Press, 2012.

REFERENCE BOOKS

1. S. R. Devasahayam, "Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling," Second Edition, Springer Publication, 2013.

REFERENCE SITE

6.1.17 BME 307 Medical Imaging

COURSE INFORMATION						
Course Code	: BME 307	Lecture Contact Hours	: 3.00			
Course Title	: Medical Imaging	Credit Hours	: 3.00			

PRE-REQUISITE

BME 101: Introduction to Biomedical Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course designs covering the topics/subtopics that help to learn and familiarize the fundamental methodologies of different medical imaging systems including the modality, imaging physics, image construction algorithms, image intervention, and safety measures during imaging.

OBJECTIVE

- 1. To acquire the rudimentary knowledge about the medical imaging system and its applicative variances.
- 2. To provide students with an overview of the computational and mathematical methods in medical imaging.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify different types of medical imaging systems and their applications in clinical diagnosis.	C1	2	1	-	1,3	T, F
CO2	Be able to understand the fundamental physics and technologies behind different imaging systems.	C2	1	1,3	-	1,3	T, F
СОЗ	Be able to apply the computational techniques to regulate image construction in digital space.	СЗ	2	1	-	1	MID, F
CO4	Be able to investigate the effect of different algorithms in image computation.	C4	4	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Introduction to Medical Imaging: Non-invasive medical imaging specialty, Medical imaging modalities with applications, Image Characteristics. X-Ray: X-ray generation, x-ray generators, Filters, intensifying screens X-radiography, Spatial resolution, Image noise and Image contrast, Introduction to fluoroscopy, Angiography, and mammography, Digital X-ray, Fundamental of Interventional Radiology. Computed tomography (CT): Basics of CT scanner system, Radon Transformation for CT imaging, Image reconstruction algorithms: Fourier slice theorem, Fourier Reconstruction, Back-projection Algorithm, Filtered back-projection method, Iterative reconstruction algorithm; CT number, Image artifacts, and Filtering, Evolution of CT from 1G to 5G. Nuclear Imaging: Principles of Gamma Camera, Imaging principles of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), Brief description of PET and SPECT modalities with differences, Safety measures in nuclear imaging.

Magnetic Resonance Imaging (MRI): Evolution of magnetic resonance imaging (MRI) technology and clinical applications, Fundamentals of nuclear magnetic resonance: Angular momentum, magnetic dipole moment, Magnetization, Larmor frequency, Midterm Break, RF and resonance, free induction decay (FID); Different coils and slice selection, spin-echo pulse sequence; Different modes of MRI Images: T1 and T2 Relaxation images, Gradient echo imaging, Diffusion-weighted imaging, etc.; Biological effects of magnetic fields and MRI imaging safety.

Functional Magnetic Resonance Imaging (fMRI): Physics behind hemodynamics and NMR, Principle of imaging, Image Features, and Applications. Ultrasound Imaging: Principle of imaging, brief description of modality, Doppler effect, Generation and detection of ultrasound-piezoelectric effect; ultrasonic transducers, Focusing arrays, Transducer beam characteristics: Huygens's principle, beam profiles, pulsed ultrasonic field, Axial and lateral resolution, Farfield and near field concept, Modes of Ultrasound Images, Introduction to Doppler imaging.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to remember the different types												
CO1	of medical imaging systems and their		3										
	applications in clinical diagnosis.												
	Be able to understand the fundamental												
CO2	physics and technologies behind the	3											
CO2	different imaging systems.												
	Be able to apply the computational												
CO3	techniques to regulate image construction		3										
	in digital space.												
CO4	Be able to analyze the effect of different				4								
	algorithms in image computation.				т								

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Introduction to Medical Imaging	

Course Offered by BME Department

T4 1		rea by BME Department
Lecture 1	Non-invasive medical imaging specialty	
Lecture 2	Medical imaging modalities with applications	
Lecture 3	Image Characteristics	CT 1 E' 1
2	X-Ray	CT – 1, Final
Lecture 4	X-ray generation, x-ray generators,	
Lecture 5	Filters, intensifying screens X-radiography, Spatial resolution,	
Lecture 6	Image noise and Image contrast	
3	X-Ray	
Lecture 7	Introduction to fluoroscopy, Angiography, mammography	
Lecture 8	Principles of digital X-ray (CR and DR)	
Lecture 9	Fundamental of Interventional Radiology	
4	Computed tomography (CT)	
Lecture 10	Basics of CT scanner system	
Lecture 11	Radon Transformation	
Lecture 12	Radon Transformation	
5	Computed tomography (CT)	
Lecture 13	Fourier slice theorem	
Lecture 14	Fourier Reconstruction	
Lecture 15	Back-projection Algorithm and Filtered back-projection	
Lecture 13	method	Midterm, Final
6	Computed tomography (CT)	
Lecture 16	Iterative methods for Image reconstruction	
Lecture 17	CT number, Image artifacts, and Filtering	
Lecture 18	Evolution of CT from 1G to 5G.	
7	Nuclear Imaging	
Lecture 19	Principles of Gamma Camera) and Imaging principles of	
	Positron Emission Tomography (PET)	
Lecture 20	Single Photon Emission Computed Tomography (SPECT)	
Lecture 21	Brief description of PET and SPECT modalities with	
	differences and safety measures	
	Midterm Break	
8	Magnetic Resonance Imaging (MRI)	
Lecture 22	Evolution of magnetic resonance imaging (MRI) technology	
	and clinical applications,	CT – 2, Final
Lecture 23	Fundamentals of nuclear magnetic resonance: Angular	,
	momentum, magnetic dipole moment,	
Lecture 24	Fundamentals of nuclear magnetic resonance: Magnetization,	
	Larmor frequency	
9	Magnetic Resonance Imaging (MRI)	
Lecture 25	RF and resonance, free induction decay (FID)	
Lecture 26	Different coils and slice selection	
Lecture 27	T1 and T2 Relaxation images	
10	Magnetic Resonance Imaging (MRI)	
Lecture 28		
	Gradient echo imaging	
Lecture 29	Diffusion weighted imaging	
Lecture 30	Biological effects of magnetic fields and MRI imaging safety	COTE A FIRST :
11	Functional Magnetic Resonance Imaging (fMRI)	CT – 3, FINAL

Lecture 31	Physics behind hemodynamics and NMR	
Lecture 32	Lecture 32 Principle of imaging	
Lecture 33	Image Features and Applications.	
12	Ultrasound Imaging	
Lecture 34	Principle of imaging, brief description of modality,	
Lecture 35	Doppler effect; Generation and detection of ultrasound-	
	piezoelectric effect;	
Lecture 36	ultrasonic transducers, Focusing arrays	
13	Ultrasound Imaging	
Lecture 37	Transducer beam characteristics: Huygens's principle, beam	
	profiles,	
Lecture 38	Pulsed ultrasonic field, Axial and lateral resolution,	
Lecture 39	Far field and near field concept	
14	Ultrasound Imaging	FINAL
Lecture 40	Introduction to Doppler imaging	
Lecture 41	Diagnosis process of Ultrasound images, applications, safety	
Lecture 41	measures	
Lecture 42	Future trends in Medical imaging	

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy
Components		Grading		Brooms Tunenemy
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4
	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
			CO1	C2
Final	Exam	60%	CO2	C3
rillai	LXaIII	0076	CO3	C2
			CO4	C4
Total Marks 100%		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt JR, and J. M. Boone, The Essential Physics of Medical Imaging, Third Edition, LIPPINCOTT WILLIAMS & WILKINS, 2012.
- 2. P. Dhawan, H. K. Huang, and D. S. Kim, Principles and Advanced Methods in Medical Imaging and Image Analysis, World Scientific Publishing, 2008.

REFERENCE BOOKS

- 1. Chris Guy and Dominic Ffytche, An Introduction to The Principles of Medical Imaging, Revised Edition, Imperial College Press, 2005.
- 2. B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, Medical Physics and Biomedical Engineering, Medical Science Series, 1999.

REFERENCE SITE

6.1.18 BME 309 Biomedical Transport Phenomenon

COURSE INFORMATION							
Course Code	: BME 309	Lecture Contact Hours	: 3.00				
Course Title	:Biomedical Transport Phenomenon	Credit Hours	: 3.00				

PRE-REQUISITE

Course Code: BME 205

Course Title: Biofluid Mechanics and Heat Transfer

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the topics that include mass, momentum and heat transport, Basic hemodynamic, equations of continuity and motion, molecular mechanics of fluid and electrolyte transport, Shear stress, mass transfer and metabolism in organs and tissues, compartmental models for pharmacokinetic analyses, analysis of blood oxygenators, Unsteady-state heat transfer modes and laws, heat transfer coefficient, heat transfer inside the body, heat transfer between body and surrounding; Analogy equations relating momentum, energy and mass transfer.

OBJECTIVE

- 1. This course aims to develop students' basic engineering knowledge of momentum, mass, and heat transfer in integrated form through an array of examples and analysis from biological systems (cellular, tissue, organ levels) and from the design of medical devices.
- 2. Application of these principles, using quantitative methods based on fundamental physical laws, to solve problems in biology, of clinical significance, and problems in the design and development of medical devices, implants, including tissue-engineered constructs.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply principles of fluid dynamics to model and characterize physiological flow conditions	C3	2	1	-	1,3	T, F
CO2	Be able to analyze and understand mass transport in biological and living systems	C4	2	1,3	-	1,3	T, F
СОЗ	Be able to assess models of drug transport and delivery in various disease conditions	C5	4	1	-	1	MID, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remo	ember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
-----------	-------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Introduction to mass and momentum in living systems; Basic hemodynamic; Application of momentum balance; Use of the equations of continuity and motion to set up complex flow problems; Conservation relation for fluid transport, dimensional analysis and scaling; Methods for analysing complex physiological flow; Flow in circulatory system and tissue; Flow within distensible tubes; Mass transfer and metabolism in organs and tissues; Diffusion: mass transfer between fluids, membrane and pores; Diffusion with convection or electrical potential; Microscopic and macroscopic mass balances; Transport in porous media; Transvascular transport; Transport of gases between blood and tissue; Analysis of blood oxygenators; Fluid transport in the kidneys; A whole organ approach to renal modelling; Drug transport in solid tumors; Transport in organs and organisms; Compartmental models for pharmacokinetic analyses.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOME			ES (PC	S (PO)							
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply principles of fluid dynamics to model and characterize physiological flow conditions		3										
CO2	Be able to analyze and understand mass transport in biological and living systems		3										
СОЗ	Be able to assess models of drug transport and delivery in various disease conditions				3								

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Introduction to transport fundamentals	
Lecture 1	Overview of the transport process and cellular transport	
Lecture 2	Application of transport process in disease pathology	
Lecture 3	An overview of hemodynamics and boundary conditions	
2	Dimensionless numbers	CT – 1, Final
Lecture 4	The Buckingham Pi Theorem and dimensionless numbers	
Lecture 5	Dimensionless numbers in biofluid dynamics	
Lecture 6	Equation of conservation of mass and linear momentum	
3	Conservation of mass and momentum	
Lecture 7	Differential continuity equation in rectangular co-ordinates	
Lecture 8	Momentum balance and forces in fluids	
Lecture 9	Euler's, Bernoulli's, and the general form of the Navier-Stokes	
	equation	
4	Dynamic similarity and introduction to pulsatile flow	
Lecture 10	Relationship between Navier Stokes and Hagen– Poiseuille equation	
Lecture 11	Dynamic similarity and non-dimensionalizing the Navier- Stokes equation	
Lecture 12	Introduction to oscillating flow in blood vessels	
5	Pulsatile flow	
Lecture 13	Velocity profile in pulsatile flow	
Lecture 14	Velocity profile in pulsatile flow	Midterm, Final
Lecture 15	Volumetric flow rate in pulsatile flow	
6	Pulsatile flow continued	
Lecture 16	Velocity-pressure phase lag in pulsatile flow	
Lecture 17	Womersley number and entrance length in physiological flows	
Lecture 18	Introduction to flow in curved vessels, Dean number and secondary flows	
7	Flow in curved vessels	
Lecture 19	Flow separation, adverse pressure gradient, and flow in branching vessels	
Lecture 20	Blood flow and velocity profiles in major arteries	
Lecture 21	Modeling and visualizing blood flow	
	Midterm Break	
8	Transport in Porous Media	
Lecture 22	Porosity, Tortuosity, and Volume fraction	
Lecture 23	Fluid flow in porous media	CT – 2, Final
Lecture 24	Solute transport in porous media	

9	Mass Transport in Biological System	•
Lecture 25	Conservation and constitutive relation	
Lecture 26	Diffusion, Diffusion coefficient, Steady-state and unsteady diffusion	
Lecture 27	Diffusion-limited reaction	
10	Diffusion with Convection or Electrical Potential	
Lecture 28	Fick's law, Dimensional analysis, Electrolyte transport	
Lecture 29	Diffusion and convection, mass transfer coefficients	
Lecture 30	Microscopic and macroscopic mass balances across membranes	
11	Transport of Gases between Blood and Tissue	
Lecture 31	Oxygen-Hemoglobin equilibria	
Lecture 32	Dynamics of oxygenation of blood and oxygen delivery in tissue	CT – 3, FINAL
	Nitric oxide production and transport in tissue	
Lecture 33	Whole-organ approach to renal modeling	
12	Drug Transport in Solid Tumors	
Lecture 34	Introduction to drug delivery in cancer treatment	
Lecture 35	Analysis of transvascular and interstitial fluid transport	
Lecture 36	Interstitial hypertension in solid tumor	
13	Drug Transport in Solid Tumors, and Pharmacokinetics	
Lecture 37	Analysis of interstitial transport of solutes	
Lecture 38	Consideration in Pharmacokinetics	
Lecture 39	Compartment models in pharmacokinetic analysis	DINAI
14	Transport in Organs and Organisms	FINAL
Lecture 40	Physiologically based pharmacokinetic models	
Lecture 41	Review	
Lecture 42	Review	

ASSESSMENT STRATEGY

Comp	onents	Grading	СО	Blooms Taxonomy		
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3	C2, C4		
	Class Participation	5%	CO1, CO2, CO3	C2		
	Midterm	15%	CO1	C3		
			CO 1	C2		
Final Exam		60%	CO 2	C3		
			CO 3	C2		

Total Marks	100%		 T
(CO = Course Outcome, C =	Cognitive Doma	ain)	

TEXT BOOKS

1. Truskey, Yuan, and Katz, Transport Phenomena in Biological Systems, Second Edition, Pearson Education, Inc.
2. Johnson and Ethier, Problems in Biomedical Fluid Mechanics and Transport Phenomena, Cambridge University Press.

REFERENCE SITE

6.1.19 BME 311 Embedded Systems and Interfacing

COURSE INFO	COURSE INFORMATION									
Course Code	: BME 311	Lecture Contact Hours	: 3.00							
Course Title	: Embedded Systems and Interfacing	Credit Hours	: 3.00							

PRE-REQUISITE

Course Code: CSE 291

Course Title: Computer Programming

Course Code: CSE 292

Course Title: Computer Programming Lab

Course Code: EECE 391

Course Title: Digital Electronics

Course Code: EECE 392

Course Title: Digital Electronics Lab

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to expose students to the field of embedded systems and to provide a knowledge foundation which will enable students to pursue a career in relevant fields. Key concepts of hardware-software interfacing control architectures, debugging, and communication protocols will be discussed in this course. Students will be familiar with different firmware architectures and can apply their knowledge in relevant fields such as; clinical device development and robotics in healthcare.

OBJECTIVE

- 1. To identify and understand fundamentals of microprocessors, microcontrollers, communication protocols and embedded firmware.
- 2. To apply the fundamental concepts of embedded engineering
- **3.** To analyze the various firmware architectures and systems
- **4.** To evaluate various large scale embedded systems

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify and understand the fundamentals of microprocessors,	C1, C2	1,2	1	-	3	T, F

Course Offered by BME Department

	microcontrollers, communication protocols and embedded firmware.						
CO2	Be able to apply the fundamental concepts of embedded engineering.	С3	2	1,3	ı	3	T, F
СОЗ	Be able to analyze the various firmware architectures and systems.	C4	2	1	-	5	MID, F
CO4	Be able to evaluate various large scale embedded systems	C5	4	1,3	-	5	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Introduction to Embedded System: Introduction to Embedded Engineering, Chronological development of Firmware and Embedded Technology, Possible Implementation in Healthcare, Review on Digital Techniques: Bit and Bytes, Memory, Number systems, Additions, Subtractions, Multiplications, Boolean Algebra, Divisions, Logic Gates, Combinational Circuits, Decoders, Encoders, Bit and Bytes, Memory, Number systems, Additions, Subtractions, Multiplications, Boolean Algebra, Divisions. Microprocessors and Microcontrollers: Flags, Resistors, Processor Types, Processor Architecture, Instruction Sets, Addressing Modes, SAP, 8086 Microprocessors, Memory, Memory Architecture, Virtual Memory, DMA and DMA Controller, AVR and ARM controllers, Overview of Developmental Microcontroller and Microprocessors, Thread, Interrupts, Programmable Timers, Multitasking, Workflow and Architecture of 16 bit/32bit PIC Firmware Programming: Assembly Language: Basic Assembly, Bit Operators, Sub Programs, Switch Day, Arrays, Streuts, Instruction sets, Loops, Conditional Statements. (Higher Level Language; Python: Data Types, python Data Structure, Functions, Object Oriented Programming, Encapsulation, Abstraction, Inheritance, Polymorphism Or C++/objective C: Data Types, Data Structure, Struc, Encapsulation, Abstraction), Inheritance Firmware Architecture, Reset Circuit, Watchdog Timer. Advanced Systems: Operating Systems, Real Time OS, Virtual Machine, FPGA, Clustering, Master Slave Topology, Multithread Processors, IoT Architecture, Medical robotics

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to identify and understand the fundamentals of microprocessors, microcontrollers, communication protocols and embedded firmware.	3	3										
CO2	Be able to apply the fundamental concepts of embedded engineering.		3										
СОЗ	Be able to analyze the various firmware architectures and systems.		3										
CO4	Be able to evaluate various large scale embedded systems				3								

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities Engagement (hours)

Course Offered by BME Department

	30 V 1
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Topic	Assessment
1	Motivation and course introduction	
Lecture 1	Introduction to Embedded Engineering, Chronological	
	development of Firmware and Embedded Technology,	
	Importance of Embedded Engineering in Healthcare	
Lecture 2	Review of Bit and Bytes, Subtractions, Multiplications,	
	Division, Boolean Algebra	
Lecture 3	Review of Logic Gates, Combinational Circuits, Decoders,	
	Encoders	CT 1 E' I
2	Introduction to microprocessors	CT – 1, Final
Lecture 4	Microprocessor Fundamentals, Types of Processors	
Lecture 5	Processor architecture	
Lecture 6	Simple As Possible (SAP) Architecture	
3	Microprocessor Fundamentals	
Lecture 7	Overview of 8086 Microprocessor	
Lecture 8	8086 Microprocessor Instruction sets	
Lecture 9	8086 Microprocessor Addressing Modes	
4	Basic Embedded Firmware	
Lecture 10	Assembly Language – 1	
Lecture 11	Assembly Language – 2	
Lecture 12	Assembly Language – 3	
5	Higher Level Embedded Firmware	
Lecture 13	Introduction to Data Types, Variable, Operators, If-else, Lists,	Middon Einel
	Functions and basic syntax	Midterm, Final
Lecture 14	Object-Oriented Programming	
Lecture 15	Object-Oriented Programming	
6	Communication Protocols	
Lecture 16	Intro to Computer Networking and Networking Layers, Bus	
	Interface, I/O Hardware and Interface, Peripheral Interfacing,	

		ered by BME Department
Lecture 17	Wired Communication Protocols (USB, UART, I2C, SPI, CAN)	
Lecture 18	Wireless Communication Protocols (Bluetooth, GSM,	
Lecture 18	ZigBEE, BLE and others)	
7	Sensors, Actuators and Interfacing	
Lecture 19	Introduction to Sensors and Actuators, Fundamentals of	
-	Sensors and Different Types of Sensors	
Lecture 20	Fundamentals of Actuators and Different Types of Actuators,	
	Interfacing of Sensors and Actuators	
Lecture 21	Interfacing of Sensors and Actuators (Continued)	
	Midterm Break	
8	Overview of Memory	
Lecture 22	Introduction to Memory, Memory Architecture	
Lecture 23	Memory Hierarchy, Memory Interface	
Lecture 24	Virtual Memory, DMA (Direct Memory Access) and DMA	
	Controller	
9	Threads, Interrupts, Timer and Multitasking	CT 2 Final
Lecture 25	Basic Concepts and Applications of Threads, Overview of Interrupts	CT – 2, Final
Lecture 26	Introduction to Programmable Timer fundamentals,	
	Fundamental Concepts of Programmable Interrupt Controller,	
Lecture 27	Overview of Multitasking in Microprocessors and Embedded	
	Systems	
10	Microcontrollers Basics, Microcontroller	
10	veding due of Dueley Princi deduct due!	
	Architectures and Application	
Lecture 28	Architectures and Application AVR and ARM Microcontrollers	
Lecture 28 Lecture 29	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller	
Lecture 28	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller Overview PIC Microcontroller (continued)	
Lecture 28 Lecture 29	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in	
Lecture 28 Lecture 29 Lecture 30	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering	
Lecture 28 Lecture 29 Lecture 30	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in	
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches	
Lecture 28 Lecture 29 Lecture 30	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design	
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued)	
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines	CT 2 FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit, Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35 Lecture 36	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards Distributed Systems, Artificial Intelligence and IoT Architecture in Embedded Systems	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35 Lecture 36	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards Distributed Systems, Artificial Intelligence and IoT	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35 Lecture 36 13	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards Distributed Systems, Artificial Intelligence and IoT Architecture in Embedded Systems Clustering, Master-Slave Topology, Multithread Processors IoT Architecture and Web Assembly	, , , , , , , , , , , , , , , , , , ,
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35 Lecture 36 13 Lecture 37	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards Distributed Systems, Artificial Intelligence and IoT Architecture in Embedded Systems Clustering, Master-Slave Topology, Multithread Processors	CT – 3, FINAL
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35 Lecture 36 13 Lecture 37 Lecture 38	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards Distributed Systems, Artificial Intelligence and IoT Architecture in Embedded Systems Clustering, Master-Slave Topology, Multithread Processors IoT Architecture and Web Assembly	, , , , , , , , , , , , , , , , , , ,
Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35 Lecture 36 13 Lecture 37 Lecture 38 Lecture 39	Architectures and Application AVR and ARM Microcontrollers Overview PIC Microcontroller (continued) Advance Firmware Architecture and Advance Concepts in Embedded Engineering Reset Circuit , Watchdog Timer, Reliable Architecture in Firmware and system design approaches Reliable Architecture in Firmware and system design approaches (continued) Operating Systems Basics, RTOS, Virtual Machines FPGA Boards Introduction to FPGA Boards Fundamentals of FPGA Boards Applications of FPGA Boards Distributed Systems, Artificial Intelligence and IoT Architecture in Embedded Systems Clustering, Master-Slave Topology, Multithread Processors IoT Architecture and Web Assembly AI Algorithms in microcontrollers and microprocessors	, , , , , , , , , , , , , , , , , , ,

Lecture 41	Overview of Robotics in Healthcare, Advanced Surgical		
	Procedures and Medical Device Development		
Lecture 42	R&D work Process and Production Line Designing		

ASSESSMENT STRATEGY

		Components Grading		СО	Blooms Taxonomy
Comp	Components			Blooms Taxonomy	
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2	C1,C2,C3	
(40%)	Class Participation	5%	CO1	C1,C2	
	Midterm	15%	CO1,CO2	C1,C2,C3	
			CO 1	CO 1	
Final	Final Exam 60%		CO 2	CO 2	
Fillal			CO 3	CO 3	
			CO 4	CO 4	
Total	Total Marks			•	

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Onatham W. Valvano, Brookes/Colem Embedded Mircrocomputer Systems: Real Time Interfacing, Pacific Grove: 2000
- 2. Charles Marut and Ytha Y. YuAssembly Language Programming and Organization of the IBM PC: McGraw-Hill, 1992. ISBN: 0071128964, 9780071128964

REFERENCE BOOKS

- 1. Douglas V Hall, Microprocessors and Interfacing
- 2. Mohamed Rafiquzzaman, Microprocessors and Microcomputer-based System Design, CRC Press, 1995

REFERENCE SITE

__

6.1.20 BME 312 Embedded Systems and Interfacing Sessional

COURSE INFO	COURSE INFORMATION						
Course Code	: BME 312	Lecture Contact Hours	: 3.00				
Course Title	: Embedded Systems and Interfacing Sessional	Credit Hours	: 1.50				

PRE-REQUISITE

Course Code: BME 311

Course Title: Embedded Systems and Interfacing

Course Code: CSE 291

Course Title: Computer Programming

Course Code: CSE 292

Course Title: Computer Programming Lab

Course Code: EECE 391
Course Title: Digital Electronics

Course Code: EECE 392

Course Title: Digital Electronics Lab

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of embedded engineering in the domain of biomedical device development and interfacing.

OBJECTIVE

This course aims to enhance students' knowledge on the basic principles of fluid mechanics and heat transfer design problem solution.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply the fundamental concepts of embedded engineering.	С3	2	-	1,3	3	T, Q, R
CO2	Be able to analyze the various firmware architectures and systems.	C4	2	-	1	5	T, Q, R, ASG
СОЗ	Be able to evaluate various large scale embedded systems	C5	4	-	1,3	5	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Boolean functions and logic gates, interfacing digital lighting display with microprocessor, stepper motor control with 8086 microprocessor, introduction to developmental boards, stepper motor control with developmental boards, introduction to single board computers, capturing video feedback with single board computers, USB communication, Bluetooth communication, biosignal acquisition with developmental boards and single board computers, implementation of threads, programmable timers, clusters, introduction and overview of 16bit PIC microcontroller, PCB designing.

SKILL MAPPING

No.	Course Learning Outcome PROGRAM OUTCOMES (PO)												
10.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply the fundamental concepts		2										
COI	of embedded engineering.)										
CO2	Be able to analyze the various firmware		2										
CO2	architectures and systems.		3										
CO3	Be able to evaluate various large scale				2								
1003	embedded systems				3								

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7

		Course Offered by BME Departmen
Pra	ectical / Tutorial / Studio	35
Stu	dent-Centered Learning	-
Self-Directed	d Learning	
No	n-face-to-face learning	-
Rev	vision of the previous and (or) subsequent lecture at home	15
Pre	eparation for final examination	10
Formal Asse	essment	
Cor	ntinuous Assessment	1
Lab	Test	1
Qui	iz	0.75
Viv	/a	0.25
Total		70
TEACHING	G METHODOLOGY	
Lecture and	discussion, Co-operative and collaborative method, Problem	based method
COURSE S	CHEDULE	
Week	Lecture Topics	Assessment

Week	Lecture Topics	Assessment				
1	Implementation of Boolean functions using logic gates					
2	Interfacing digital lighting display (Dot-matrix) with microprocessor					
3	Stepper Motor Control With 8086 Microprocessor					
4	Introduction to Arduino Development Board and Stepper Motor Control					
	with Arduino Uno	Report, Assignment, Lab				
5	Introduction to Raspberry Pi and Video Feed Capture with Raspberry Pi	Test, Quiz, Viva				
6	USB Communication Between Arduino and Raspberry Pi and					
	Interfacing with Temperature Sensor					
7	PCB Designing in Proteus, Discussion on Project Proposal					
Midterm Break						
8	Introduction To IoT: Bluetooth Communication and Storing of Data					
	with Raspberry Pi and Arduino					
9	Biosignal Acquisition and Display with Arduino and Raspberry Pi					
	Cluster	Report, Lab Test, Quiz,				
10	Implementation of Threads, Programmable Timer with Raspberry Pi-	Viva				
	Arduino Cluster and LEDs					
11	Introduction to 16bit PIC Microcontroller and LED Switching with 16					
	bit PIC Microcontroller					
12	Project Presentation					
13	Lab Test					
14	Quiz and Viva					
ASSESSME	ENT STRATEGY					

				2
Components		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C3, C4, C5
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C3, C4, C5
Final Exam	Lab Test	20%	CO1, CO2, CO3	C3, C4, C5
(60%)	Quiz	30%	CO1, CO2, CO3	C3, C4, C5
	Viva	10%	CO1, CO2, CO3	C3, C4, C5
Total Marks		100%		-

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1.Onatham W. Valvano, Brookes/Colem Embedded Mircrocomputer Systems: Real Time Interfacing, Pacific Grove: 2000
- 2. Charles Marut and Ytha Y. YuAssembly Language Programming and Organization of the IBM PC: McGraw-Hill, 1992. ISBN: 0071128964, 9780071128964

REFERENCE BOOKS

- 1.Douglas V Hall, Microprocessors and Interfacing
- 2. Mohamed Rafiquzzaman, Microprocessors and Microcomputer-based System Design, CRC Press, 1995

REFERENCE SITE

--

6.1.21 BME 313 Biomedical Image Processing

COURSE INFORMATION							
Course Code	: BME 313	Lecture Contact Hours	: 3.00				
Course Title	: Biomedical Image Processing	Credit Hours	: 3.00				

PRE-REQUISITE

BME 305: Biomedical Signal Processing

BME 307: Medical Imaging

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to prepare students to learn the basic knowledge regarding the processing techniques of medical images including filtering, transformation, compression, storage, reconstruction, segmentation, etc. to enhance its quality so that the medical image-based diagnosis process could be aided.

OBJECTIVE

- 1. To provide knowledge about the different processing techniques regarding medical images.
- 2. To equip students theoretically skilled in medical image processing to solve the real-life problem related to imaging-based clinical diagnosis.

COURSE OUTCOMES & GENERIC SKILLS

Course Offered by BME Department

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand different steps of biomedical image processing steps and their applications in clinical diagnosis.	C1	1	1	-	1,3	T, F
CO2	Be able to understand the fundamental image processing technique.	C2	1	1,3	-	1,3	T, F
СОЗ	Be able to apply the basic image processing techniques with a modified form to medical images.	СЗ	5	1	-	1	MID, F
CO4	Be able to analyze the medical image related to real-life problems and possible processing techniques for aiding diagnosis.	C4	2	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
C1 Itemember	C2 Chacistana	C5 Tippiy	C+ / maryze	C5 Evaluate	Co Cicate

COURSE CONTENT

Origin of Medical Images and Processing: Medical image sources, Properties, Processing challenges, Processing steps, Image representation, Hardware, and software requirements. Image as Two-dimensional (2D) systems: Image as a 2D signal, 2D sequences, and systems, Vector-space image representation, superposition and convolution, 2D Sampling theory, Image quantization, Image perception, Smoothing & Sharpening, Spatial filtering, Quality measures. Image Transforms: 2D Fourier Transform, Sine and Cosine transformation, Hadamard transformation, Slant, and KL transformation. Colors in Image: Concept of monochrome and color images, Color Fundamentals, Color Models, Pseudo Color Image Processing, Basics of Full-Color Image Processing, Color Transformations.

Image Enhancement: Image Enhancement in spatial domain: Gray Level Transformations, Histogram Processing, Smoothing and Sharpening Spatial Filters; Image Enhancement in the frequency domain: Smoothing Frequency-Domain Filters, Sharpening Frequency Domain Filters. Image Reconstruction: Reconstruction concept of medical images, Image reconstruction in X-Ray, Image reconstruction in CT, Fourier slice theorem, Back projection algorithm for parallel projection data, Filtered-back projection algorithm, Image Reconstruction in Magnetic Resonance Imaging, Image Reconstruction in Ultrasound Imaging. Image segmentation: Feature Extraction, Edge Detection, Boundary Extraction, Region Representation, Moment Representation, Shape Features, Scene Matching Image Segmentation, Threshold-based segmentation, Region growing segmentation, Active contour model for segmentation.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to understand different steps of												
CO1	biomedical image processing steps and	3											
	their applications in clinical diagnosis.												
CO2	Be able to understand the fundamental	3											
CO2	image processing technique.	3											
	Be able to apply the basic image												
CO3	processing techniques with the modified					3							
	form to medical images.												
	Be able to analyze the medical image												
CO4	related to real-life problems and possible		2										
1004	processing techniques for aiding		3										
	diagnosis.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

TEACHING I	LEARNING	STRATEGY

TENEMING ELIMINATEST	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Origin of Medical Images and Processing	
Lecture 1	Medical image sources, Properties	
Lecture 2	Processing challenges, Processing steps	
Lecture 3	Image representation, hardware and software requirements	
2	Image as Two-dimensional (2D) systems	
Lecture 4	Image as a 2D signal, 2D sequences, and systems	
Lecture 5	Vector-space image representation	CT – 1, Final
Lecture 6	superposition and convolution	
3	Image as Two-dimensional (2D) systems	
Lecture 7	2D Sampling theory, Image quantization, Image perception	
Lecture 8	Smoothing & Sharpening, Quality measures	
Lecture 9	Spatial filtering	

4	Image Transforms	Ојјегей бу БМЕ Дерантет			
Lecture 10	2D Fourier Transform				
Lecture 11	Sine transformation				
Lecture 12	Cosine transformation				
5	Bio-image compression algorithms	7			
Lecture 13	Hadamard Transformation	_			
Lecture 14	Slant Transform				
Lecture 15	KL Transform				
6	Colors in Image	Midterm, Final			
Lecture 16	Concept of monochrome and color images				
Lecture 17	Color Fundamentals				
Lecture 18	Color Models				
7	Colors in Image	_			
Lecture 19	Pseudo Color Image Processing	_			
Lecture 20	Basics of Full-Color Image Processing				
Lecture 21	Color Transformations				
Lecture 21	Midterm Break				
8	Image Enhancement (Spatial Domain)				
Lecture 22	Gray Level Transformations, Histogram Processing				
Lecture 23	Smoothing Spatial Filters				
Lecture 24	Sharpening Spatial Filters	_			
9	Image Enhancement (Frequency Domain)	_			
Lecture 25	Smoothing Frequency-Domain Filters	_			
Lecture 26	Smoothing Frequency-Domain Filters	CT – 2, Final			
Lecture 27	Sharpening Frequency Domain Filters				
10	Image Reconstruction				
Lecture 28	Reconstruction concept of medical images	_			
Lecture 29					
Lecture 29 Lecture 30	Image reconstruction in X-Ray Image reconstruction in CT				
11	Image Reconstruction Fourier slice theorem	_			
Lecture 31		_			
Lecture 32	Back projection algorithm for parallel projection data	CT – 3, FINAL			
Lecture 33	Filtered-back projection algorithm	CI – 3, FINAL			
12	Image Reconstruction				
Lecture 34	Image Reconstruction in Magnetic Resonance Imaging				
Lecture 35	Image Reconstruction in Ultrasound Imaging				
Lecture 36	Feature Extraction				
13	Image segmentation	4			
Lecture 37	Edge Detection, Boundary Extraction	4			
Lecture 38	Region Representation, Moment Representation	4			
Lecture 39	Shape Features, Threshold-based segmentation	FINAL			
14	Image segmentation	_			
Lecture 40	Scene Matching Image Segmentation				
Lecture 41	Region growing segmentation,				
Lecture 42	Active contour model for segmentation				
ASSESSMENT ST	ΓRATEGY				

				_, _
Comp	oonents	Grading	CO	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4
(40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
			CO1	C2
Final	Evom	60%	CO2	C3
rmai	Final Exam		CO3	C2
			CO4	C4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Fourth Edition, Pearson, 2017.
- 2. Atam P. Dhawan, Medical Image Analysis, Second Edition, IEEE Series in Biomedical Engineering, 2011.

REFERENCE BOOKS

1. Jiri Jan, Medical Image Processing, Reconstruction and Restoration: Concept and Method, Taylor and Francis Publisher, 2006.

REFERENCE SITE

6.1.22 BME 314 Biomedical Image Processing Sessional

COURSE INFORMATION						
Course Code	: BME 314	Lecture Contact Hours	: 3.00			
Course Title	: Sessional on Biomedical Image Processing	Credit Hours	: 1.50			

PRE-REQUISITE

BME 307: Medical Imaging

BME 313: Biomedical Image Processing

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to furnish students' knowledge of Medical Imaging and Biomedical Image Processing including quality assurance, quality control, calibration, and maintenance of medical imaging devices, as well as the reconstruction and processing of medical images.

OBJECTIVE

- 1. To perform the quality assurance, quality control, calibration, and maintenance of medical imaging modalities
- 2. To process the problems regarding the medical image reconstruction and quality enhancement

COUL	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods		
CO1	Be able to understand the procedure of quality assurance quality control, calibration and maintenance of medical imaging modalities practically.	C2	1	-	1	1	T, Q, R		
CO2	Be able to apply and analyze the construction and processing mechanism of the medical images.	C3, C4	2	-	1, 3	1, 2	T, Q, R, ASG		
CO3	Be able to apply different algorithms to the medical images to solve imaging-based diagnosis	C2	5	-	1	1	T, Q, R		

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
-----------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Introduction to Medical Imaging, their modalities, and the relevance to Biomedical Engineering, Observation the imaging techniques of different medical imaging modalities and learning about quality control system as per guideline of IAE and NCRT, Fundamental image processing techniques by MATLAB, Processing techniques of an X-ray Image, Radon transformation and Sinogram for the CT Imaging, Back projection algorithm to reconstruct CT image, Image Segmentation, Case study on medical images to improve the image quality for aiding diagnosis.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the procedure of quality assurance quality control, calibration, and maintenance of medical imaging modalities practically.	3											
CO2	Be able to apply and analyze the construction and processing mechanism of the medical images.		3										
CO3	Be able to apply different algorithms to the medical images to solve imaging- based diagnosis					3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	

	55 5 1
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment			
1	Introduction to Medical Imaging, their modalities, and the relevance to Biomedical Engineering				
2	A study tour to a medical imaging center to observe the imaging techniques of X-ray and CT and learning about quality control system as per guideline of IAE and NCRT.				
3	A study tour to a medical imaging center to observe the techniques of MRI and Ultrasound imaging and learning about quality control system as per guideline of IAE and NCRT.	Report, Assignment, Lab			
4	A study tour to a medical imaging center to observe the techniques of Nuclear Imaging and learning about quality control system as per guideline of IAE and NCRT.	Test, Viva			
5	Introductory practice on the fundamental image processing techniques by MATLAB				
6	Experiment on the processing techniques of an X-ray Image				
7	Experiment on the Radon transformation and Sinogram for the CT Imaging				
	Midterm Break				
8	Design and implementation of the back-projection algorithm to reconstruct CT image				
9	Experiment on the segmentation of the brain MRI images	Daniert Lab Track Onda			
10	Case study on image processing to improve the image quality for aiding diagnosis. Report, Lab Test, Qui				
11	Case study on image processing to improve the image quality for aiding diagnosis.				
12	A project show based on medical image processing by the students				

13	Final Lab Test		
13	O ' AY	_	
14	Quiz/Viva		

ASSESSMENT STRATEGY

Components		Components Grading		Blooms Taxonomy
Comp	Jonenis	Grading		
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0070)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total Marks 1009		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1.Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Fourth Edition, Pearson, 2017.
- 2. Atam P. Dhawan, Medical Image Analysis, Second Edition, IEEE Series in Biomedical Engineering, 2011.

REFERENCE BOOKS

1. Jiri Jan, Medical Image Processing, Reconstruction and Restoration: Concept and Method, Taylor and Francis Publisher, 2006.

REFERENCE SITE

6.1.23 BME 315 Biomaterials

COURSE INFORMATION					
			: 3.00		
Course Code Course Title	: BME 315 : Biomaterials	Lecture Contact Hours Credit Hours	: 3.00		

PRE-REQUISITE

CHEM 103 - General Chemistry; CHEM 125 - Physical and Bio-organic Chemistry; BME 203 - Biochemistry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers the following modules: Structure of solids, characterization of biomaterials, metallic implant materials, ceramic implant materials, synthetic polymeric materials, composite biomaterials and material-tissue interactions, sterilization of biomaterials, structure and function of natural biomaterials.

OBJECTIVE

- 1. To introduce students to different implants, prosthetic and functional materials, investigate the materials' properties including their designs and applications.
- 2. To investigate both synthetic and natural polymers, and explore biomaterial-tissue interaction in detail with a focus on applications in tissue engineering and cardiology.

COUL	COURSE OUTCOMES & GENERIC SKILLS									
No.	Course Outcome	Bloom's Taxonomy	PO	СР	CA	KP	Assessment Methods			
CO1	Be able to identify different types of biomaterials	C2	2	-	-	1	T, MID			
CO2	Be able to understand and analyze the properties of biomaterials	C2	1	-	-	1	T, MID, F			
СОЗ	Be able to comprehend the interactions of cell and tissues with biomaterials based on biomaterial properties and reactivity	C5	4,2	-	3	1	MID, F			
CO4	Be able to design and apply different types of biomaterials to solve biomedical problems	С3	3	-	-	1	T, F			

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

The structure of solid: Structure of solids overview, classification of solids, classification of solids based on structure, lattice imperfections and defects

Properties and Characterization of Materials: Thermal properties phase diagrams, strengthening by heat treatments, surface properties and adhesion. Electrical properties, optical properties, x-ray absorption, acoustic and ultrasonic properties, density and porosity and diffusion properties, XPS, XRD, spectroscopy, SFM, AFM, optical characterization of biomaterials

Metallic Biomaterials: Stainless steels, co-based alloys, Ti and Ti-based alloys, dental metals, other metals, corrosion of metallic implants.

Ceramic Implant Materials: Structural property relationship of ceramics, aluminum oxides (alumina), zirconium oxides (zirconia), calcium phosphate, glass ceramics, other ceramics, carbons, deterioration of ceramics.

Synthetic Polymeric Material: Basic structure, classifications (thermoplasts, thermoset, and elastomers), different physical and mechanical properties, and various uses of biomaterials. Natural polymeric materials, biodegradable polymers, applications and functions

Composites as Biomaterials: Structure, mechanics of composites, applications of composite biomaterials, biocompatibility of composite, biomaterials.

Biological response to biomaterials: biocompatibility, toxicity of biomaterials, host response of biological materials to biomaterials, sterilization of biomaterials, applications of biomaterials in cardiology and tissue engineering

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome	Course Learning Outcome 1 2 3 4		4	5	6	7	8	9	10	11	12	
CO1	Be able to identify different types of		3										
COI	biomaterials												
CO2	Be able to understand and analyze the	3											
CO2	properties of biomaterials												
	Be able to comprehend the interactions of												
CO3	cell and tissues with biomaterials based on		3		3								
	biomaterial properties and reactivity												
	Be able to design and apply different types												
CO4	of biomaterials to solve biomedical			3									
	problems												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face-to-Face Learning							
Lecture	42						
Practical / Tutorial / Studio	-						
Student-Centred Learning	-						
Self-Directed Learning							
Non-face-to-face learning	42						
Revision of the previous and (or) subsequent lecture at home	21						
Preparation for final examination	21						
Formal Assessment							
Continuous Assessment	2						
Final Examination	3						
Total	131						

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Course Introduction and the structure of solids	
Lecture 1	Introduction to biomaterials	
Lecture 2	Classification of biomaterials	
Lecture 3	Atomic bonding and the structure of solids	
2	Structure of solids	
Lecture 4	Crystal structure: crystalline and non-crystalline materials	
Lecture 5	Imperfections in crystalline structures	
Lecture 6	Mechanical testing methods, tensile and compression properties of	CT – 1 and Midterm,
	biomaterials	Final
3	Mechanical properties and characterization of biomaterials	
Lecture 7	Shear properties, stress-strain properties and analysis of biomaterials	

Lecture 8	Bending properties, creep, fatigue, and stress relaxation of	·
	biomaterials	
Lecture 9	Thermal processing and properties of biomaterials	
4	Phase diagram	
Lecture 10	Basic concepts of phases and microstructure	
Lecture 11	Iron-Iron Carbide phase diagram	
Lecture 12	Phase transformation	
5	Physical Properties of Biomaterials	
Lecture 13	Electrical properties of biomaterials	
Lecture 14	Optical properties of biomaterials	
Lecture 15	X-ray diffraction, ultrasonic, and acoustic properties	
6	Characterization of biomaterials	
Lecture 16	Spectroscopic analysis of biomaterials	
Lecture 17	Surface characterization of biomaterials -AFM, SFM, SEM, and	Midterm, Final
	optical techniques	
Lecture 18	Introduction to metallic biomaterials - stainless steel and Co-Cr	
	based alloys	
7	Metallic biomaterials	
Lecture 19	Titanium and Titanium based alloys	
Lecture 20	Corrosion of metallic implants	
Lecture 21	Revision	
	MIDTERM	
8	Ceramic Biomaterials	
Lecture22	Structure property relationship of ceramics	
Lecture 23	Aluminum Oxides (Alumina) & Zirconium Oxides (Zirconia)	
Lecture 24	Glass ceramics	
9	Polymeric biomaterials	
Lecture 25	Structure and classification of polymeric materials	
Lecture 26	Properties and processing of polymeric materials	
Lecture 27	Natural polymeric materials – properties and functions	
10	Polymeric biomaterials	
Lecture 28	Hydrogel – properties, functions and applications	
Lecture 29	Biodegradable polymers – properties, functions and applications	CT – 2, FINAL
Lecture 30	Polymeric biomaterials in biosensors	
11	Composite biomaterials and Biocompatibility	
Lecture 31	Structure and anisotropy of composites	
Lecture 32	Fibrous and particulate composites	
Lecture 33	Biocompatibility of biomaterials	
12	Biological response to biomaterials	
Lecture 34	Protein-biomaterial interactions	
Lecture 35	Cell/tissue-biomaterial interactions	
Lecture 36	Toxicity and immune response	
13	Soft tissue replacement	
Lecture 37	Sutures, surgical tapes, and adhesives	
Lecture 38	Percutaneous and skin implants	
Lecture 39	Cardiovascular grafts and stents	CT – 3, FINAL
Lecture 39	Caratovasculai gratis alia stolits	<u> </u>

14	Hard tissue replacement
Lecture 40	Fracture and spinal plates
Lecture 41	Dental restorations and implants
Lecture 42	Revision

FINAL EXAMINATION

ASSESSMENT STRATEGY

_		Components Grading		Blooms Taxonomy
Comp	Components		CO	Brooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO3	C2
Assessment (40%)	Class Participation	5%	CO2	C4
	Midterm	15%	CO1, CO2	C2, C4
			CO 1	C2
Final	Final Exam 60%		CO 2	C4
			CO 3	C2
Total	Total Marks			

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Biomaterials, Joyce Y Wong, Joseph D Bronzino, CRC Press (latest edition)
- 2. Biomaterials: An Introduction, 3rd Edition by Joon Park R.S. Lakes

REFERENCE BOOKS

1. Materials Science and Engineering - An Introduction, 4th Ed,WD Callister, Jr. and David G. Rethwisch

REFERENCE SITE

_

6.1.24 BME 316 Biomaterials Sessional

COURSE INFO	COURSE INFORMATION										
Course Code	: BME 316	Lecture Contact Hours	: 3.00								
Course Title	: Biomaterials Sessional	Credit Hours	: 1.50								

PRE-REQUISITE

Course Code: BME 303
Course Title: Biomaterials

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the characterization of mechanical, physical, and chemical properties, such as young's modulus, ductility, porosity, corrosion, and surface topography of biomaterials.

OBJECTIVE

This course aims to introduce students to biomaterial testing and the factors influencing their functions.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to investigate different biomaterials to determine their mechanical strength properties	C4	4		1	1, 2	T, Q, R
CO2	Be able to synthesize polymeric biomaterials and characterize their physical and chemical properties	C4	4		1	1, 2	T, Q, R
СОЗ	Be able to design , develop and test synthetic biomaterials for biomedical applications.	C6	3,10		1	5	PR, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Determination of elasticity and Young's modulus, stress and strain analysis, tensile test, compressive test, bending test, impact test, corrosion test, microscopic analysis, surface topography and porosity, hydrogel and composite biomaterial fabrication, bone cement preparation, spectrophotometric and FTIR characterization of biomaterials.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
140.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to investigate different biomaterials to determine their mechanical strength properties				3								
CO2	Be able to synthesize polymeric biomaterials and characterize their physical and chemical properties				3								
CO3	Be able to design , develop and test synthetic biomaterials for biomedical applications.			3							2		

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment	
1	Introduction to biomaterials lab, laboratory techniques, laboratory rules. Introduction to polymer biomaterials		
2	Preparation and synthesis of hydrogel		
3	Physical property and qualitative assessment of the hydrogel. Preparation of hydrogel for lyophilization and degradation test	D	
4	Analysis of the lyophilized hydrogel and water absorption test Measurement of the degradation test	Report, Lab Test, Quiz, Viva	
5	Measurement of water absorption test and degradation test Preparation for FTIR analysis and tensile test		
6	FTIR analysis of hydrogels		
7	Tensile testing of hydrogels		
	Midterm Break		
8	Lab Test 1		
9	Preparation and fabrication of bone cement	Report, Lab Test, Quiz,	
10	Compression analysis of bone cement	Viva	
11	Three point bending of bone cement/other relevant composite/biological materials		

12	UV-VIS spectrophotometry analysis of different concentrations of solutions	Project, Presentation
13	Optical property measurement of different materials	
14	Quiz and Viva	

ASSESSMENT STRATEGY

		C		Blooms Taxonomy		
Comp	onents	Grading				
Continuous	Report	20%	CO1, CO2	C4		
Assessment (30%)	Class Participation	10%	CO1, CO2, CO3	C4, C6		
	Lab Test	15%	CO1, CO2	C4		
Final Exam	Project	15%	CO3	C6		
(70%)	Quiz	30%	CO1, CO2	C4		
	Viva	10%	CO1, CO2	C4		
Total	Total Marks					

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

1. Elements of Materials Science and Engineering 6th Edition. by L. H. Van Vlack

REFERENCE SITE

6.1.25 BME 318 Biomedical Engineering Design Sessional I

COURSE INFO	COURSE INFORMATION						
Course Code	: BME 318	Lecture Contact Hours	: 3.00				
Course Title	: Biomedical Engineering Design Sessional	Credit Hours	: 1.50				

PRE-REQUISITE

Course Code: BME 104

Course Title: CAD in Biomedical Engineering Sessional

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of design tools to model prototypes and develop the individual project ideas and full completion of an individual project.

OBJECTIVE

The aim of this course is to enhance student's idea about project and develop their capabilities of project management.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply modern engineering tools to develop projects to enhance healthcare facilities.	С3	3, 5	1	-	1	T, Q, R
CO2	Be able to analyze a complex problem and using engineering tools and knowledge would be able to formulate a suitable solution.	C4	2, 5	1	-	1, 2	T, Q, R, ASG
СОЗ	Be able to design and develop devices and equipment to improve healthcare facilities.	C6	3	1, 3	-	5	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

The course introduces students to the fundamental fabrication techniques utilized in biomedical engineering research and medical device production. In the first 7 weeks students are given hands-on training on a range of techniques such as FDM printing, SLA printing, PCB design and fabrication, CNC milling, laser cutting, and PDMS microfabrication. Students are then given specific design challenges which they will address utilizing the relevant design principals. Design challenges are directed by the course instructor(s) and may include topics ranging from instrumentation to prosthetic/orthotic development.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
	Be able to apply modern engineering tools												
CO1	to develop projects to enhance healthcare			2		3							
	facilities.												
	Be able to analyze a complex problem and												
CO2	using engineering tools and knowledge would be able to formulate a suitable		2			3							
	solution.												
	Be able to design and develop devices and												
CO3	equipment to improve healthcare			3									
ĺ	facilities.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
Lecture	7			
Practical / Tutorial / Studio	35			
Student-Centered Learning	-			
Self-Directed Learning				
Non-face-to-face learning	-			
Revision of the previous and (or) subsequent lecture at home	15			
Preparation for final examination	10			
Formal Assessment				
Continuous Assessment	1			
Lab Test	1			
Quiz	0.75			
Viva	0.25			
Total	70			

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introduction to biomedical design, group formation, and directed	
	development of a sample prototype in relevant design software	
2	Prototype printing using Stereolithography printing (SLA) and analysis	
	of the printed model	D
3	Designing an electrical circuit using CNC milling	Report, Assignment, Lab Test, Quiz, Viva
4	Designing an electrical circuit using a PCB printer	rest, Quiz, viva
5	Creation of micro-channels on acrylic using laser cutter	
6	Fabrication, inspection and assembly of PDMS microchannels	
7	Mid-term quiz and launching of design challenge	

	Midterm Break					
8	Brainstorming feasible solutions to the design challenge					
9	Prototype development	Report, Lab Test, Quiz,				
10		Viva				
11	Prototype measurement and characterization					
12	Prototype testing and validation					
13	Presentation and project showcasing					
14	Project Submission with complete documentation (Drawing, user					
	manual, report and design history file)					

ASSESSMENT STRATEGY

Components		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0070)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total Marks 1		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Robbinson C.J., Rehabilitation Engineering. CRC press 1995
- 2. Gerald E. Miller, Artificial Organs, Morgan & Claypool Publishers, 2006

REFERENCE BOOKS

- 1. Bronzino. Joseph, Handbook of biomedical engineering. CRC; 2 Sub editions, 1999
- 2. BallabioE.etal, Rehabilitation Engineering. IOS press 1993.

REFERENCE SITE

6.1.26 BME 300 Industrial Training

COURSE INFORMATION										
			: 1.50							
Course Code Course Title	: BME 300 : Industrial Training	Lecture Contact Hours Credit Hours	: 1.50							

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Training in industry, hospital or healthcare organization will be conducted for a duration of 4 weeks at the end of level 3 term 2. Students will learn how to apply their skills as a biomedical engineer in a professional setting and will undergo extensive training in preparation for their role in the industry, hospital, or healthcare facilities. The training can be arranged by the department.

OBJECTIVE

1. To learn and explore the different technical aspects and management of health-related organizations.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the role of a biomedical engineer in their respective fields	C2	6, 12	-	7	7	R, Pr
CO2	Be able to evaluate various technical aspects of biomedical equipment	C5	9, 10	2	-	7	R, Pr
СОЗ	Be able to learn and apply professional ethics, responsibilities and the norms of the engineering practice.	СЗ	8, 12	-	7	7	R, Pr
CO4	Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.	C6	10	-	-	7	R, Pr
CO5	Be able to apply their biomedical engineering knowledge in a professional setting	С3	9, 11, 12	1	-	6	R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 – Create

COURSE CONTENT

4 weeks of industrial training at an industry, hospital, or healthcare organization. This is obligatory for the completion of B.Sc. course. An evaluation report from the industry is to be submitted at the end of the training and accordingly to be incorporated in the tabulation sheet.

SKILL MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the role of a biomedical engineer in their respective fields						3						3
CO2	Be able to evaluate various technical aspects of biomedical equipment									2	3		
CO3	Be able to learn and apply professional ethics, responsibilities and the norms of the engineering practice.								3				3
CO4	Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.										3		

	Be able to apply their biomedical						
CO5	engineering knowledge in a professional				3	3	
	setting						

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	2
Final Presentation	1
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method, Training.

Week	Content	Assessment								
1	Industrial Training at an industry, hospital, or healthcare organization									
2	Industrial Training at an industry, hospital, or healthcare organization	Continuous Assessment,								
3	Industrial Training at an industry, hospital, or healthcare organization	Report								
4	Industrial Training at an industry, hospital, or healthcare organization									
	Final Presentation									
ASSESSMENT ST	ASSESSMENT STRATEGY									

Comp	ponents	Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C2, C3, C5
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C2, C3, C5
Final Exam (60%)	Final Presentation	60%	CO1, CO2, CO3	C2, C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

TENT DOOR

REFERENCE SITE

COURSE INFORMATION

Course Code	: BME 301	Lecture Contact Hours	: 3.00
Course Title	: Statistics and Numerical Methods for	Credit Hours	: 3.00
	Biomedical Engineers		. 3.00

PRE-REQUISITE

Course Code: MATH 205

Course Title: Differential Equation, Laplace Transform and Fourier Transform

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To teach the students the basic concepts and principles of numerical methods and statistics. It is targeted to provide a basic foundation for mathematics areas such as various numerical approximations of linear equations and DEs etc. Finally, this course is designed to develop the capability of solving real- life problems through Numerical methods and giving statistical interpretation and comments.

OBJECTIVE

- 1. Be able to understand the basic knowledge of various numerical approximations for solving equations.
- 2. Be able to provide a statistical probability of any real-life problem.
- 3. Implement numerical methods and statistical concepts in solving different engineering problems.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand different numerical methods.	C2	1	1		1	T, F, ASG
CO2	Be able to identify and analyze statistical data and probability concepts.	C2	2	1		1,2	T, MT, F, ASG

	Be able to apply numerical methods,						MT, F				
CO3	sampling theory and different statistical	C3	5	1		1,2					
	tests to solve real-world problems.										
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; MT– Midterm Exam;										
	ASG – Assignment; F – Final Exam)										

COURSE CONTENT

Numerical Methods For Biomedical Engineering:

Numerical Solution of Algebraic and Transcendental Equations: Introduction, Bisection method, Newton-Raphson method. Solution of system of linear equations using direct and iterative method.

Interpolation: Finite differences, Forward and backward differences, Difference table, difference of polynomial. Newton forward and backward interpolation formula, Central and divided differences, Numerical Integration Numerical solution of ordinary differential equations.

Statistics:

Correlation: Scatter diagrams, Correlation co-efficient, Rank correlation, Correlation ratio, Theorems on correlations.

Regression Analysis: Linear regression, Equation of the line of regression, Regression co-efficient, Curve fitting, Method of least square.

Probability: Mathematical and statistical definitions, Additive and multiplicative rule of probability, Conditional probability, Baye's theorem, joint probability.

Random Variables: Discrete and continuous random variables, Probability mass function, Probability density function, Cumulative distribution functions, Mathematical expectation.

Discrete Probability Distribution: Binomial distribution, Negative binomial distribution, Geometric distribution, Poisson's distribution.

Continuous Probability Distribution: Normal distribution, Exponential distribution, Chi-square distribution, t and F- distributions.

Sampling Distribution: Population, Sample mean, Sample variance, Central limit theorem, Sampling distribution from a normal population.

Test of Hypothesis: Statistical hypothesis, Level of significance, Type I and Type II error, One tailed and two tailed tests, Tests for proportions.

Analysis of Variance: One way and Two classification of ANOVA

SKILL MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand different numerical methods.	3											
CO2	Be able to identify and describe statistical data and probability concepts.		3										
CO3	Be able to Apply numerical methods, sampling theory and different statistical tests to solve real-world problems.					3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Justification for CO-PO mapping:

Mapping	Iapping Corresponding Justifications			
	Level of			
	matching			
CO1-PO1(a)	3	The knowledge of mathematics has to be applied to understand different		
		numerical methods in the field of engineering study.		
CO2-PO1(a)	3	In order to identify and describe statistical phenomena and probability		
		distribution, using the knowledge of mathematics and sciences is required.		
CO3-PO1(a)	3	Interpret various numerical methods and statistical phenomena to solve DEs		
		using them, the knowledge of mathematics is required.		

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Week 1	Numerical Analysis	
Class 1	Numerical Solution of Algebraic and Transcendental Equations:	_
	Introduction	
Class 2	Bisection method	
Class 3	Newton-Raphson method	
Week 2	Numerical Analysis	CT 1
Class 4	Solution of system of linear equations using direct method	
Class 5	Solution of system of linear equations using iterative method	
Class 6	Interpolation: Finite differences, Forward differences	
Week 3		
Class 7	Interpolation: Finite differences, backward differences	
Class 8	Central differences, Divided differences, Difference table	
Class 9	Central differences, Divided differences, Difference table]
Week 4	Numerical Analysis	
Class 10	difference of polynomial	
Class 11	Newton interpolation formula	CT 2
Class 12	Newton forward interpolation formula, Newton backward	
	interpolation formula	

Week 5	Numerical Analysis	
Class 13	Numerical Integration	
Class 14	Numerical solution of ordinary differential equations	
Class 15	Application of numerical methods in Biomedical Engineering	
Week 6	Statistics	
Class 16	Introduction to statistics, correlation: Scatter diagrams, Correlation coefficient	
Class 17	Rank correlation, Correlation ratio, Theorems on correlations.	
Class 18	Regression Analysis: Linear regression	
Week 7	Statistics	
Class 19	Least square method Equation of the line of regression	
Class 20	Regression co-efficient, Curve fitting	
Class 21	Probability: Mathematical and statistical definitions, Additive and multiplicative rule of probability	
Week 8	Statistics	
Class 22	Conditional probability, Joint Probability, Baye's theorem	Mid
Class 23	Conditional probability, Joint Probability, Baye's theorem	Term
Class 24	Random Variables: Discrete and continuous random variables,	
Week 9	Statistics	
Class 25	Random Variable: Probability mass function	
Class 26	Probability density function, Cumulative distribution functions	
Class 27	Mathematical expectation.	
Week 10	Statistics	
Class 28	Discrete Probability Distribution: Binomial distribution,	
Class 29	Negative binomial distribution, Geometric distribution	
Class 30	Poisson's distribution.	
Week 11	Statistics	
Class 31	Continuous Probability Distribution: Normal distribution: Introduction	CT 3
Class 32	Continuous Probability Distribution: Normal distribution: Theory	
Class 33	Continuous Probability Distribution: Normal distribution: Example	
Week 12	Statistics	
Class 34	Exponential distribution, Chi-square distribution, t and F- distributions	
Class 35	Sampling Distribution: Population, Sample mean, Sample variance	
Class 36	Central limit theorem, Sampling distribution from a normal population.	
Week 13	Statistics	
Class 37	Test of Hypothesis : Statistical hypothesis, Level of significance, Type I and Type II error	
Class 38	One tailed and two tailed tests, Tests for proportions.	
Class 39	Effect size Cohen's D method	
Week 14	Statistics	
Class 40	Analysis of Variance (ANOVA): One tailed and Two tailed tests	
Class 41	Analysis of Variance: Example	
Class 42	Statistical applications in Biomedical Engineering	

ASSESSMEN	NT STRATEGY					
Components Grading			СО	Blooms Taxonomy		
	Class Test/		CO1, CO2	C2		
Continuous Assessment	Assignment 1-3	20%	CO3	СЗ		
(40%)	Class Participation	5%	CO1, CO2, CO3	C2, C3		
	Midterm	15%	CO 2, CO3	C2, C3		
			CO 1	C2		
Final	Final Exam		CO 2	C2		
			CO 3	C2, C3		
Total Marks 100%						

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Numerical analysis, Walter Gautschi
- 2. Probability and Statistics for Engineers, Scheaffer & McClave.

REFERENCE BOOKS

- 1. Introduction to Statistics for Biomedical Engineers, Kristina M. Ropella
- 2. Business Statistics, Gupta and Gupta.

REFERENCE SITE

--

COURSE INFORMATION

	: BME 302		: 3.00
Course Code	: Statistics and Numerical	Lecture Contact Hours	: 1.50
Course Title	Methods for Biomedical	Credit Hours	
	Engineers Sessional		

PRE-REQUISITE

Course Code: BME 301

Course Title: Statistics and Numerical Methods for Biomedical Engineers

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

A biomedical engineer or researcher has to deal with different form of complex computational problems in his/her academic and professional life. Besides, from a large scale computation and analysis different forms of statistical decisions are to make by the biomedical engineers and researchers. To make these sorts of numerical and statistical computations simpler, faster, more efficient and accurate, learning about well-known statistical and numerical methods are obligatory. This laboratory coursework includes some of these statistical and numerical techniques like regression, curve fitting, interpolation, root finding, numerical calculus, solving linear and non-linear equations, higher order statistical measures, different statistical distributions, hypothetical tests, etc. This course covers the application of the statistical and numerical methods to solve the real-life problems using computer programming language like MATLAB, Python, R, etc.

OBJECTIVE

To develop students' skill of applying different statistical and numerical methods to solve real-life biomedical engineering problems utilizing the analytical tools like MATLAB, Python, R, etc.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to analyze and apply different statistical techniques to solve the related problems.	C3, C4	2, 5	-	-	1	T, Q, R
CO2	Be able to analyze and apply different numerical methods to solve real-life mathematical problems.	C3, C4	2, 5	-	-	1	T, Q, R
CO3	Be able to compare between different statistical and numerical techniques to conclude about the suitable technique for efficient and accurate results.	C5	2, 5	-	-	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction to MATLAB/Python/R; Curve fitting problems and solutions using Linear Regression, Polynomial Regression, and Lagrange's Interpolation formula; Numerical root finding approach using Bisection Method, False Position Method, and Newton-Raphson Method; Numerical differentiation; Numerical integration; Finding the solutions of a linear system; Finding the concept of lower and higher order moments of random variables; Familiarization to the Probability, Conditional Probability, and Joint Probability, and the implementation techniques of Histogram, PDF's, CDF's of random variables, Binomial Distribution, Negative Binomial Distribution, Geometric Distribution, Normal Distribution and Poisson's distribution; Overview on the Statistical Hypothesis Test and execution of z-test, t-test, and Chi-Square (χ2) test for the statistically hypothetical decision making on Biomedical data; One-way and Two-way Analysis of Variances (ANOVA) for the statistical significance test of Biomedical data.

SKILL MAPPING

No.	Caura I carrin a Outcarra	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to analyze and apply different statistical techniques to solve the related problems.		3			3							
CO2	Be able to analyze and apply different numerical methods to solve real-life mathematical problems.		3			3							
CO3	Be able to compare between different statistical and numerical techniques to conclude about the suitable technique for efficient and accurate results.		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introduction to Statistics and Numerical Analysis Tools (MATLAB/Python/R)	Report, Lab Test, Quiz,
2	Introduction to curve fitting problems related to Biomedical Engineering and their solutions using Linear Regression, Polynomial Regression, and Lagrange's Interpolation formula.	Viva

3	Numerical approach to find the root of a non-linear equation using Bisection Method, False Position Method, and Newton-Raphson Method.	
4	Numerical differentiation using Forward Difference and Backward Difference approaches.	
5	Numerical integration using Trapezoidal, Simpson's (1/3), and Simpson's (3/8) rules.	
6	Finding the solutions of a linear system (a set of equations with multiple variables) using Gauss-Jordan Elimination through Pivoting and Gauss-Siedel Iterative methods.	
7	Lab Quiz	
	Midterm Break	
8	Introduction to the random variables in biomedical engineering problems and the concept of method of moments to find lower and higher order moments of random variables.	
9	Familiarization to the Probability, Conditional Probability, and Joint Probability, and the implementation techniques of Histogram, PDF's, CDF's of random variables.	
10	Familiarization and Implementation of Binomial Distribution, Negative Binomial Distribution, Geometric Distribution, Normal Distribution and Poisson's distribution.	Report, Lab Test, Quiz, Viva
11	Overview on the Statistical Hypothesis Test and execution of z-test, t -test, and Chi-Square (χ^2) test for the statistically hypothetical decision making on Biomedical data.	
12	A gentle introduction to the execution of One-way and Two-way Analysis of Variances (ANOVA) for the statistical significance test of Biomedical data.	
13	Final lab test	
14	Final Quiz + Viva	

ASSESSMENT STRATEGY

Components Grading		СО	Blooms Taxonomy	
Continuous	Report	20%	CO1, CO2, CO3	C4, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C3
(0070)	Viva	10%	CO1, CO2, CO3	C4, C3
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

^{6.} Numerical Methods for Engineers by Steven C. Chapra & Raymond P. Canale. 2015 (Seventh Edition), McGraw Hill Education Publications

- 7. Statistics in MATLABA Primer By MoonJung Cho, Wendy L. Martinez. 2015 (First Edition), CRC Press.
- 8. Numerical and Statistical Methods for Bioengineering: Applications in MATLAB (Cambridge Texts in Biomedical Engineering) 1st Edition; by Michael R. King and Nipa A. Mody.

REFERENCE SITE

-

COURSE INFORMATION

			: 3.00
	: BME 303	Lecture Contact Hours	: 3.00
Course Title	: Biomechanics	Credit Hours	

PRE-REQUISITE

ME 291: Principle of mechanical engineering

PHY 127: Structure of matter, Electricity, Magnetism, and Mechanics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the major topics/subtopics that include introduction to biomechanics, tissue mechanics, joint biomechanics, movement mechanics, dynamics to human motion, linear and angular kinematics, examples in biomechanics, modern kinematic measurement techniques, applications of human motion analysis, introduction to viscoelasticity.

OBJECTIVE

- 7. To describe the fundamental of biomechanics.
- 8. To Study the deformability, strength, viscoelasticity of bone and flexible tissues, modes of loading and failure.
- 9. To describe the types and mechanics of skeletal joints.
- 10. To describe movement precisely, using well defined terms (kinematics) and also to consider the role of force in movement (kinetics).
- 11. To teach students the unique features of biological flows, especially constitutive laws and boundaries.
- 12. To consider the mechanics of orthopedic implants and joint replacement, artificial heart valve, mechanical properties of cardiovascular and respiratory mechanics

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	To understand various properties of hard tissues (bone) & soft tissues (articular cartilage, tendons and ligaments) and identify the appropriate model to demonstrate mechanical behavior.		1	1	-	1	T, F
CO2	To analyze the biomechanics of different human joints and also the forces at a skeletal joint for various static and dynamic human activities.	C4	2	1	-	1, 3	T, F
CO3	To explain the mechanics of moving systems and familiarity with human anatomy to competently analyze gross movement and dynamics of the human body.	C2	1	1	-	1, 3	MID, F

	To evaluate the design requirements of									
CO4 medical implants based on human anatomy			C5	4	1	-	1		T, F	
and biological responses to biomaterials.										
(CP- C	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG –							Quiz; ASG –		
Assign	nment; Pr – P	resentation; R - Report	t; F – Final Exa	am)						
C1 - Remember C2 - Understand C3 - Apply				C4 - Ana	lyze	C5 - 1	Evalua	te	C6	- Create
			•	•						

COURSE CONTENT

Kinematic and Kinetic Concepts:

Forms of motion, Standard reference terminology, Joint movement terminology, Force, moment, couples, loads on the human body, Equations of static equilibrium, Structural idealization applications in biomechanics, stress and strain analysis.

Muscle and Movement:

Skeletal muscle morphology, Isotonic versus isometric construction, Muscles constitutive modelling, whole muscle mechanics parallel versus pinnate muscle types, Factors affecting muscular force generation; Muscular strength, power, endurance; muscle and bone interactions.

Basic Statics and Movements at Specific Joints:

Shoulder and Shoulder Girdle; Elbow and Forearm; Wrist and Hand; Trunk and Spine; Hip, Knee, Ankle; Patterns of movement; Structural and Functional Analysis.

Linear and Angular Kinematics of Human Movement:

Overview of linear kinematics, Acceleration, Projectile motion analysis, Linear and angular motion relationship, Modern kinematics measurement techniques.

Linear and Angular Kinetics of Human Movement:

Kinetic law of motion, Angular analogues of Newton's law of motion, Modern kinetics measurement techniques, Application of human motion.

Human Movement in Fluid Medium:

Nature of fluid, Viscoelasticity, Buoyancy, Drag, Lift force, Propulsion in fluid medium.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.			2	3	4	5	6	7	8	9	10	11	12
CO1	To understand various properties of hard tissues (bone) & soft tissues (articular cartilage, tendons and ligaments) and identify the appropriate model to demonstrate mechanical behavior.	3											
CO2	To analyze the biomechanics of different human joints and also the forces at a skeletal joint for various static and dynamic human activities.		3										
CO3	To explain the mechanics of moving systems and familiarity with human anatomy to competently analyze gross movement and dynamics of the human body.	3											
CO4	To evaluate the design requirements of medical implants based on human				3								

	Course O _j	jerea by BME Department
•	and biological responses to	
Numerical method	used for mapping which indicates 3 as high, 2 as medium, and 1 as lo	avy laval of matching)
(Numerical method	used for mapping which indicates 3 as fight, 2 as medium, and 1 as it	ow level of matering)
TEACHING LEAD	RNING STRATEGY	
Teaching and Learn	ing Activities	Engagement (hours)
Face-to-Face Learni	ing	
Lecture		42
	Tutorial / Studio	=
	entred Learning	-
Self-Directed Learn		40
	to-face learning	42 21
	f the previous and (or) subsequent lecture at home n for final examination	21
Formal Assessment		
	s Assessment	2
Final Exan	3	
Total		131
TEACHING MET	THODOLOGY	
Lecture and discuss	ion, Co-operative and collaborative method, Problem based method	
COURSE SCHED	ULE	
***	m ·	
Week	Topic	Assessment
Lecture 1	Kinematic and Kinetic Concepts Forces, moments, couples, mechanical loads and effects of	_
Lecture 1	loading	
Lecture 2	Forms of motion, Anatomical reference position, planes and	_
	axes, Joint movement terminology	CT – 1, Final
Lecture 3	Equations of static equilibrium and structural idealization	_
	applications in biomechanics	
2	Human Motion Analysis	
Lecture 4	Modern kinematic measurement techniques	
Lecture 5	Applications of human motion analysis	
Lecture 6	The human gait cycle	
3	Linear kinematics	
Lecture 7	Rigid body mechanics	_
Lecture 8	Linear kinematics in human motion: measurements and analysis	_
Lecture 9	Joint kinematics and Euler's angles	
4	Angular Kinematics	

Lecture 10		ей бу БМЕ Беринтет
Lecture 10	Angular kinematics relationships, comparison between angular	
Lecture 11	and linear kinematics	
	Angular kinematics of different joints	
Lecture 12	Kinetics in human motion – center of pressure, and ground	
_	reaction forces	
5	Kinetics in human motion	
Lecture 13	Analysis of ground reaction forces in different axis	Midterm, Final
Lecture 14	Forces and moments determination in kinetic studies	whater m, r mar
Lecture 15	Determination of joint moments and power	
6	Musculoskeletal System	
Lecture 16	Review: stress-strain analysis of materials	
Lecture 17	Introduction to musculoskeletal system- bone anatomy and	
	architecture	
Lecture 18	Mechanical properties of bone, fracture mechanics and healing	
7	Muscles and Movement	
Lecture 19	Skeletal muscle morphology and architecture	
Lecture 20	Isotonic versus isometric contraction	
Lecture 21	Muscles constitutive modelling, Whole muscle mechanics	
	parallel versus pinnate muscle types	
	Midterm Break	
8	Introduction to Joints	
Lecture 22	Joint – structure and properties	
Lecture 23	Joint – types and movement	
Lecture 24	Structure, movement and loads on the shoulder	
9	Human Joint Articulation	
Lecture 25	Joint Architecture, stability and flexibility	
Lecture 26	Common Joint injuries and introduction to the biomechanics of	CT – 2, Final
	human upper extremity	
Lecture 27	Structure, movement and loads on the shoulder	
10	Joint Movement Analysis	
Lecture 28	Structure, movement and loads on the elbow and wrist	
Lecture 29	Structure, movement and loads on the hip, knee and ankle	
Lecture 30	Problem solving	
11	Joint Movement Analysis of Spine	
Lecture 31	Stress relaxation properties of articular cartilage	
Lecture 32	Structure, properties and functions of spine	
Lecture 33	Spine mechanics and movement	
12	Mechanics of tendons, ligaments and articular cartilage	
Lecture 34	Structure and organization of tendons and ligaments	
Lecture 35	Mechanical and viscoelastic properties of tendons and ligaments	
Lecture 36	Structure, function and mechanical properties of articular	CT – 3, FINAL
	cartilage	
13	Introduction to cell mechanics and mechanobiology	
Lecture 37	Overview of multi-scale mechanobiology	
Lecture 38	Cell/tissue mechanics – implications in development and disease	FINAL
Lecture 39	Cell/tissue mechanics – implications in development and disease	
Lociale 37	implications in development and disease	

14	Review Class
Lecture 40	Single cell and bulk tissue mechanical measurements systems
Lecture 41	Review and Mathematical problem solving
Lecture 42	Review and Mathematical problem solving

ASSESSMENT STRATEGY

		Grading	CO	Blooms Taxonomy
Comp	Components			
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2, CO4	C2, C4, C5
(40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO3	C2
			CO 1	C2
Eina!	Exam	60%	CO 2	C4
Fillal	Exam	0076	CO 3	C2
			CO 4	C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Susan J. Hall, Basic Biomechanics, McGraw Hill, Sixth Edition.
- 2. Emico okuno, Luciano Fratin, Biomechanics of the Human Body, Springer.

REFERENCE SITE

__

COURSE INFORMATION								
Course Code	: BME 304	Lecture Contact Hours	: 3.00					
Course Title	: Biomechanics Sessional	Credit Hours	: 1.50					

PRE-REQUISITE

Course Code: BME 303 Course Title: Biomechanics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of experimental analysis and computational techniques to the biomechanics of the human body.

OBJECTIVE

This course aims to introduce students to the generation and analysis of biomechanical models and data.

COUL	COURSE OUTCOMES & GENERIC SKILLS										
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods				
CO1	Be able to analyze the electromyography signal and mechanics of muscle contraction and joints.	C4	2, 5	-	1	1	T, Q, R				
CO2	Be able to analyze the linear and angular kinetics and kinematics of a body in motion.	C4	2, 5	-	1	1	T, Q, R				
СОЗ	Be able to evaluate the computational model of a body in motion.	C5	2, 5	-	1,3	2	T, Q, R				

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Introduction to skeletal biomechanics, The study of muscular contraction using electromyography, The study of joint biomechanics, Linear Kinematics of an object in motion and total body center of mass determination, Introduction to linear kinetics and analysis of vertical ground reaction force, Introduction to angular kinematics and range of motion, Creating and simulating the computational model of a dynamic body in motion, Biomedical Orthosis/ Prosthesis design & simulation, Study of Ankle Injury Using OpenSim (Both Free Fall & AFO Assisted), Creating and simulating the computational model of a static and dynamic body in motion

SKILL MAPPING

No.	Course Learning Outcome				PR	OGI	RAN	1 OL	JTCC	MES	(PO)		
140.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to analyze the electromyography signal and mechanics of muscle contraction and joints.		3			3							
CO2	Be able to analyze the linear and angular kinetics and kinematics of a body in motion.		3			3							
СОЗ	Be able to evaluate the computational model of a body in motion.		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities Engagement (hours)

Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introduction to skeletal biomechanics	
2	The study of muscular contraction using electromyography	
3	Linear Kinematics of an object in motion and total body center of mass determination	D (117 (0)
4	Introduction to linear kinetics and analysis of vertical ground reaction force	Report, Lab Test, Quiz, Viva
5	Introduction to angular kinematics and range of motion	
6	Analysis of kinetics & kinematics data part 1	
7	Analysis of kinetics & kinematics data part 2	
	Midterm Break	
8	Mid Lab Test	
9	Biomedical Orthosis/ Prosthesis design & simulation	
10	Study of Ankle Injury Using OpenSim (Both Free Fall & AFO Assisted)	Report, Lab Test, Quiz,
11	Creating and simulating the computational model of a static body at rest	Viva
12	Creating and simulating the computational model of a dynamic body in motion	
13	Final Lab Test	
14	Quiz and viva	
ASSESSME	ENT STRATEGY	

Components Grading			СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5
Assessment (30%)	Class Participation	10%	CO1, CO2, CO3	C4, C5
E:1 E	Lab Test	35%	CO1, CO2, CO3	C4, C5
Final Exam (70%)	Quiz	25%	CO1, CO2, CO3	C4, C5
(7070)	Viva	10%	CO1, CO2, CO3	C4, C5
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 3. Duane Knudson, Fundamentals of Biomechanics, Second Edition, Springer publication, 2007 (UNIT IV)
- 4. Donald R. Peterson and Joseph D. Bronzino, Biomechanics Principles and applications, CRC Press, Taylor & Francis Group, LLC, 2008 (UNIT II, III)

REFERENCE SITE

https://simtk-confluence.stanford.edu:8443/display/OpenSim/Building+a+Dynamic+Walker+in+Matlab

COURSE	COURSE INFORMATION								
Course Co		: BME 305 : Biomedical Signal Processing	Lecture Contact Hours Credit Hours	: 3.00 : 3.00					

PRE-REQUISITE

Math 205: Differential Equation, Laplace Transform and Fourier Transform

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to introduce the fundamental concepts and methods for the characterization and analysis of digital signal and systems with a particular emphasis on the understanding of the basic Biomedical signals and systems.

OBJECTIVE

- 3. To provide the knowledge about the different processing techniques regarding signal and systems
- 4. To equip students skilled to apply the knowledge of signal processing to solve the real life problems related to Biosignal.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand signals in the time, frequency, Laplace, and Z domains	C2	1	1	-	1,3	T, F
CO2	Be able to comprehend the fundamental signal processing techniques	C2	1	1,3	-	1,3	T, F
СОЗ	Be able to acquire popular biomedical signals and their fundamental features'	C2	2	1	-	1	MID, F
CO4	Be able to design and analyze the basic processing techniques for the Biomedical signals	C3, C4	3	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------------------------	------------	--------------	---------------	-------------

COURSE CONTENT

Signal and System: Linearity of System, Classification and properties of signals, Common signals in engineering, Continuous-Time (CT) and Discrete-Time (DT) signal and system, Quantization, Analog to digital conversion of signal. Modeling of Signals and Systems: Impulse Response, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) of Discrete-Time Systems, Difference Equation, Convolution, Correlation, Covariance, Transient and Steady-state Response. Signal Transformation: Discrete Fourier Transformation (DFT), Fast Fourier Transformation (FFT), Inverse FFT, Z-Transformation, Inverse Z-Transformation. Randomness and Estimation of Signals: Linear Time Invariant (LTI) system, Stationarity and Ergodicity, Power Spectral Density, Frequency and Power Spectrum.

Introduction to Biosignals: Origins, properties and suitable models of popular biosignals, Objectives and challenges of Biosignal Analysis; Steps of Biosignal Processing. **Noise** and **Filters:** Noise Models, Averaging filters, Design and principles of Wiener Filter, FIR and IIR filters. **Biomedical Signal Processing:** Spectral analysis of ECG, EEG, EMG, and EOG signals, Case study on ECG and EMG signals, Introduction to Feature Extractions and Classification.

SKILL MAPPING

No.	Course Learning Outcome				PI	ROG	RA]	M O	UTC	OME	S (PO)	
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand signals in the	3											
	time, frequency, Laplace, and Z domains												
CO2	Be able to comprehend the fundamental signal processing techniques	3											
CO3	Be able to acquire popular biomedical signals and their fundamental features'		3										
CO4	Be able to design and analyze the basic processing techniques for the Biomedical signals			3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week Topic		Assessment	
1	Signal and System		
Lecture 1	Linearity of System, Classification and properties of signals,		
	Common signals in engineering		
Lecture 2	Continuous-Time (CT) and Discrete-Time (DT) signal and		
	system		
Lecture 3	Quantization, Analog to digital conversion of signal		
2	Modeling of Signals and Systems	CT – 1, Final	
Lecture 4	Impulse Response		
Lecture 5	Finite Impulse Response (FIR) of Discrete-Time Systems		
Lecture 6	Infinite Impulse Response (IIR) of Discrete-Time Systems		

3	Modeling of Signals and Systems	<u> </u>
Lecture 7	Difference Equation	
Lecture 8	Convolution	
Lecture 9	Correlation, Covariance, Transient and Steady-State Response	
4	Signal Transformation	
Lecture 10	Discrete Fourier Transformation (DFT)	
Lecture 11	Fast Fourier Transformation (FFT)	
Lecture 12	Fast Fourier Transformation (FFT)	
5	Signal Transformation	
Lecture 13	Inverse FFT	
Lecture 14	Z-Transformation	
Lecture 15	Z-Transformation	
6	Randomness of Biosignals	Midterm, Final
Lecture 16	Z-Transformation	
Lecture 17	Inverse Z-Transformation	
Lecture 18	Inverse Z-Transformation	
7	Randomness of Biosignals	
Lecture 19	Linear Time-Invariant (LTI) system, Stationarity and	
	Ergodicity,	
Lecture 20	Frequency and Power Spectrum	
Lecture 21	Frequency and Power Spectrum	
	Midterm Break	
8	Introduction to Biosignals	
Lecture 22	Origins, properties and suitable models of popular biosignals	
Lecture 23	Objectives and challenges of Biosignal Analysis	
Lecture 24	Steps of Biosignal Processing	
9	Noise and Filters	
Lecture 25	Noise Model	
Lecture 26	Averaging filters	CT – 2, Final
Lecture 27	Averaging filters	
10	Time Domain Filters	
Lecture 28	Design and principles of Wiener Filter	
Lecture 29	Design and principles of Wiener Filter	
Lecture 30	FIR filters	
11	Digital Filters	
Lecture 31	FIR filters	
Lecture 32	Fundamental Design of Window-based FIR filter	
Lecture 33	Fundamental Design of Window-based FIR filter	
12	Digital Filters	
Lecture 34	IIR Filter design	
Lecture 35	IIR Filter design	
Lecture 36	Applications of IIR Filters in Biosignals	CT – 3, FINAL
13	Biomedical Signal Processing	
Lecture 37	Spectral analysis of ECG and EEG signals	
Lecture 38	Spectral analysis of EMG and EOG signals	FINAL
Lecture 39	Case study on ECG and EMG signals	

14	Biomedical Signal Processing
Lecture 40	Case study on ECG and EMG signals
Lecture 41	Introduction to Feature Extractions and Classification
Lecture 42	Introduction to Feature Extractions and Classification

			СО	Blooms Taxonomy		
Components		Grading	60	Blooms Taxonomy		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C3		
(40%)	Class Participation	5%	CO3	C2		
	Midterm	15%	CO2	C3		
			CO 1	C2		
Final	Evam	60%	CO 2	C3		
Final Exam		0076	CO 3	C2		
			CO 4	C4		
Total Marks 100%						

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 3. Emmanuel Ifeachor and Barrie Jervis, "Digital Signal Processing: A Practical Approach," Second Edition, Pearson Publications, 2002.
- 4. S. R. Devasahayam, "Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling," Second Edition, Springer Publication, 2013.

REFERENCE BOOKS

- K J Blinowska and J Zygierewicz, "Practical Biomecial Signal Analysis Using MATLAB," CRC Press, 2012.
- 2. Robert B. Northrop, Signals and Systems in Biomedical Engineering, CRC Press, 2003

REFERENCE SITE

PRE-REQUISITE

BME 305: Biomedical Signal Processing

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to prepare students to apply the knowledge of digital signal processing to apply to Biomedical signals for processing and finding the hidden information inside the Biosignals.

OBJECTIVE

- 3. To perform different signal processing algorithms and techniques to process the Biomedical signals
- 4. To apply the knowledge of signals processing techniques for the real-life problems regarding the Biomedical signals

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the signal processing related problems and relevant solution techniques in biomedical signals	C2	2		1	1	T, Q, R
CO2	Be able to apply the theoretical knowledge of signal processing and analyze the biomedical signals	C3, C4	2, 5		1, 3	1, 2	T, Q, R, ASG
СОЗ	Be able to evaluate the meaningful information from the real-life biomedical signals	C5	2, 5		1	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Sampling, quantization, and representation of different Biosignals, Finite and infinite response determination of a signal, Convolution and its application, Correlation and Covariance of signals with its applications, Determination of DFT, FFT, PSD of the Signal, Z-transformation and inverse Z-transformation, Wiener Filter, Window-based FIR filter, IIR filter, Linear transformation.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the signal processing related problems and relevant solution techniques in biomedical signals		3										
CO2	Be able to apply the theoretical knowledge of signal processing and analyze the biomedical signals		3			3							
CO3	Be able to evaluate the meaningful information from the real-life biomedical signals		3			3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introductory Practice on the Fundamentals of Signal Processing in	
	Matlab programming software	
2	Experiment on sampling, quantization, and representation of different	
	Biosignals	
3	Experiment on the finite and infinite response determination of a signal	Donart Assistment Lab
4	Experiment of Convolution and its application in Biosignal Processing	Report, Assignment, Lab Test, Viva
5	Investigation on Correlation and Covariance of signals with its applications in Biosignals	1031, 1144
6	Determination of DFT, FFT, PSD of a Biosignal	
7	Experiment on the utilization of Z-transformation and inverse Z-	
	transformation in Biosignal processing	
	Midterm Break	
8	Designing a Wiener Filter to remove noises from Biosignals	
9	Designing window-based FIR filter for low pass, high pass, and band- pass filters	Report, Lab Test, Quiz, Viva
10	Designing IIR filter for low pass, high pass, and band-pass filter	viva
11	Experiment on the linear transformation of Biosignals	
12	Evaluation of the signal processing-based Project given to the students	
13	Lab Test	
14	Quiz and Viva	

ASSESSME	NT STRATEGY			
Comp	ponents	Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
E:1 E	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam (60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0070)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 3. Emmanuel Ifeachor and Barrie Jervis, "Digital Signal Processing: A Practical Approach," Second Edition, Pearson Publications, 2002.
- 4. K J Blinowska and J Zygierewicz, "Practical Biomedical Signal Analysis Using MATLAB," CRC Press, 2012.

REFERENCE BOOKS

2. S. R. Devasahayam, "Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling," Second Edition, Springer Publication, 2013.

REFERENCE SITE

COURSE INFORMATION

			: 3.00
Course Code Course Title	: BME 307 : Medical Imaging	Lecture Contact Hours Credit Hours	: 3.00

PRE-REQUISITE

BME 101: Introduction to Biomedical Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course designs covering the topics/subtopics that help to learn and familiarize the fundamental methodologies of different medical imaging systems including the modality, imaging physics, image construction algorithms, image intervention, and safety measures during imaging.

OBJECTIVE

- 3. To acquire the rudimentary knowledge about the medical imaging system and its applicative variances.
- 4. To provide students with an overview of the computational and mathematical methods in medical imaging.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
	Be able to identify different types of medical						
CO1	imaging systems and their applications in	C1	2	1	-	1,3	T, F
	clinical diagnosis.						

Course Offered by BME Department

CO2	Be able to understand the fundamental physics and technologies behind different imaging systems.	C2	1	1,3	ı	1,3	T, F
СОЗ	Be able to apply the computational techniques to regulate image construction in digital space.	СЗ	2	1	-	1	MID, F
CO4	Be able to investigate the effect of different algorithms in image computation.	C4	4	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction to Medical Imaging: Non-invasive medical imaging specialty, Medical imaging modalities with applications, Image Characteristics. X-Ray: X-ray generation, x-ray generators, Filters, intensifying screens X-radiography, Spatial resolution, Image noise and Image contrast, Introduction to fluoroscopy, Angiography, and mammography, Digital X-ray, Fundamental of Interventional Radiology. Computed tomography (CT): Basics of CT scanner system, Radon Transformation for CT imaging, Image reconstruction algorithms: Fourier slice theorem, Fourier Reconstruction, Back-projection Algorithm, Filtered back-projection method, Iterative reconstruction algorithm; CT number, Image artifacts, and Filtering, Evolution of CT from 1G to 5G. Nuclear Imaging: Principles of Gamma Camera, Imaging principles of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), Brief description of PET and SPECT modalities with differences, Safety measures in nuclear imaging.

Magnetic Resonance Imaging (MRI): Evolution of magnetic resonance imaging (MRI) technology and clinical applications, Fundamentals of nuclear magnetic resonance: Angular momentum, magnetic dipole moment, Magnetization, Larmor frequency, Midterm Break, RF and resonance, free induction decay (FID); Different coils and slice selection, spin-echo pulse sequence; Different modes of MRI Images: T1 and T2 Relaxation images, Gradient echo imaging, Diffusion-weighted imaging, etc.; Biological effects of magnetic fields and MRI imaging safety. Functional Magnetic Resonance Imaging (fMRI): Physics behind hemodynamics and NMR, Principle of imaging, Image Features, and Applications. Ultrasound Imaging: Principle of imaging, brief description of modality, Doppler effect, Generation and detection of ultrasound-piezoelectric effect; ultrasonic transducers, Focusing arrays, Transducer beam characteristics: Huygens's principle, beam profiles, pulsed ultrasonic field, Axial and lateral resolution, Farfield and near field concept, Modes of Ultrasound Images, Introduction to Doppler imaging.

SKILL MAPPING

No.	Course I comine Outcome		PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	GRAM OUTCOMES (PO) 5 6 7 8 9 10 11	12						
CO1	Be able to remember the different types of medical imaging systems and their applications in clinical diagnosis.		3											
CO2	Be able to understand the fundamental physics and technologies behind the different imaging systems.	3												
CO3	Be able to apply the computational techniques to regulate image construction in digital space.		3											
CO4	Be able to analyze the effect of different algorithms in image computation.				4									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Introduction to Medical Imaging	
Lecture 1	Non-invasive medical imaging specialty	
Lecture 2	Medical imaging modalities with applications	
Lecture 3	Image Characteristics	
2	X-Ray	CT – 1, Final
Lecture 4	X-ray generation, x-ray generators,	
Lecture 5	Filters, intensifying screens X-radiography, Spatial resolution,	

Lecture 6	Image noise and Image contrast	
3	X-Ray	
Lecture 7	Introduction to fluoroscopy, Angiography, mammography	
Lecture 8	Principles of digital X-ray (CR and DR)	
Lecture 9	Fundamental of Interventional Radiology	
4	Computed tomography (CT)	
Lecture 10	Basics of CT scanner system	
Lecture 11	Radon Transformation	
Lecture 12	Radon Transformation	
5	Computed tomography (CT)	
Lecture 13	Fourier slice theorem	
Lecture 14	Fourier Reconstruction	
Lecture 15	Back-projection Algorithm and Filtered back-projection	
	method	Midterm, Final
6	Computed tomography (CT)	
Lecture 16	Iterative methods for Image reconstruction	
Lecture 17	CT number, Image artifacts, and Filtering	
Lecture 18	Evolution of CT from 1G to 5G.	
7	Nuclear Imaging	
Lecture 19	Principles of Gamma Camera) and Imaging principles of	
	Positron Emission Tomography (PET)	
Lecture 20	Single Photon Emission Computed Tomography (SPECT)	
Lecture 21	Brief description of PET and SPECT modalities with	
	differences and safety measures	
	Midterm Break	
8	Magnetic Resonance Imaging (MRI)	
Lecture 22	Evolution of magnetic resonance imaging (MRI) technology	
	and clinical applications,	CT – 2, Final
Lecture 23	Fundamentals of nuclear magnetic resonance: Angular	
	momentum, magnetic dipole moment,	
Lecture 24	Fundamentals of nuclear magnetic resonance: Magnetization,	
	Larmor frequency	
9	Magnetic Resonance Imaging (MRI)	
Lecture 25	RF and resonance, free induction decay (FID)	
Lecture 26	Different coils and slice selection	
Lecture 27	T1 and T2 Relaxation images	
10	Magnetic Resonance Imaging (MRI)	
Lecture 28	Gradient echo imaging	
Lecture 29	Diffusion weighted imaging	
Lecture 30	Biological effects of magnetic fields and MRI imaging safety	
11	Functional Magnetic Resonance Imaging (fMRI)	
Lecture 31	Physics behind hemodynamics and NMR	
Lecture 32	Principle of imaging	CT – 3, FINAL
Lecture 33	Image Features and Applications.	C1 - 3, FINAL
12	Ultrasound Imaging	
Lecture 34	Principle of imaging, brief description of modality,	

Lecture 35	Doppler effect; Generation and detection of ultrasound- piezoelectric effect;				
Lecture 36	ultrasonic transducers, Focusing arrays				
13	Ultrasound Imaging				
Lecture 37					
Lecture 38	Pulsed ultrasonic field, Axial and lateral resolution,				
Lecture 39	Far field and near field concept				
14	Ultrasound Imaging	FINAL			
Lecture 40	Introduction to Doppler imaging				
Lecture 41					
Lecture 42	Future trends in Medical imaging				

Comp	oonents	Grading	СО	Blooms Taxonomy
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4
	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
			CO1	C2
Final	Exam	60%	CO2	C3
rillai	LXaIII	0076	CO3	C2
			CO4	C4
Total Marks 100%		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 3. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt JR, and J. M. Boone, The Essential Physics of Medical Imaging, Third Edition, LIPPINCOTT WILLIAMS & WILKINS, 2012.
- 4. P. Dhawan, H. K. Huang, and D. S. Kim, Principles and Advanced Methods in Medical Imaging and Image Analysis, World Scientific Publishing, 2008.

REFERENCE BOOKS

- 1. Chris Guy and Dominic Ffytche, An Introduction to The Principles of Medical Imaging, Revised Edition, Imperial College Press, 2005.
- 2. B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, Medical Physics and Biomedical Engineering, Medical Science Series, 1999.

REFERENCE SITE

COURSE INFORMATION											
Course Code	: BME 309	Lecture Contact Hours	: 3.00								
Course Title	:Biomedical Transport Phenomenon	Credit Hours	: 3.00								

Course Code: BME 203

Course Title: Biofluid Mechanics and Heat Transfer

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the topics that include mass, momentum and heat transport, Basic hemodynamic, equations of continuity and motion, molecular mechanics of fluid and electrolyte transport, Shear stress, mass transfer and metabolism in organs and tissues, compartmental models for pharmacokinetic analyses, analysis of blood oxygenators, Unsteady-state heat transfer modes and laws, heat transfer coefficient, heat transfer inside the body, heat transfer between body and surrounding; Analogy equations relating momentum, energy and mass transfer.

OBJECTIVE

- 3. This course aims to develop students' basic engineering knowledge of momentum, mass, and heat transfer in integrated form through an array of examples and analysis from biological systems (cellular, tissue, organ levels) and from the design of medical devices.
- 4. Application of these principles, using quantitative methods based on fundamental physical laws, to solve problems in biology, of clinical significance, and problems in the design and development of medical devices, implants, including tissue-engineered constructs.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	To apply mathematics, science, and engineering principles, methodologies to formulate and solve problems at the interface of engineering and biology, physiology, including processes leading to disease states.	С3	2	1	-	1,3	T, F
CO2	To interpret results from formulated engineering problems derived for living systems as well as the ability to infer and to make refinement for further insights at the interaction between living and non-living materials and systems.	C4	2	1,3	-	1,3	T, F
CO3	To evaluate the breadth and depth across the range of engineering topics and their applications in biological, physiological problems including	C5	4	1	-	1	MID, F

Course Offered by BME Department

	levices that enhance nealthcare delivery.	the								
` -	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)									
C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evalua	ate C6	- Create				

COURSE CONTENT

Introduction to mass, momentum and heat transport in living systems; Basic hemodynamic; Use of the equations of continuity and motion to set up complex flow problems; Basic molecular mechanics of fluid and electrolyte transport across cell membranes and epithelia; Flow within distensible tubes; Shear stress and endothelial cell function; Mass transfer and metabolism in organs and tissues; Microscopic and macroscopic mass balances; Diffusion: mass transfer between fluids, membrane and pores; mass transfer coefficient; Blood-tissue transport of solutes in the microcirculation; Mass transfer in kidney dialysis; Compartmental models for pharmacokinetic analyses; Analysis of blood oxygenators; Unsteady-state heat transfer modes and laws, heat transfer coefficient, heat transfer inside the body, heat transfer between body and surrounding; Analogy equations relating momentum, energy and mass transfer.

Introduction to mass and momentum in living systems; Basic hemodynamic; Application of momentum balance; Rheology and blood flow; Conservation relation for fluid transport, dimensional analysis and scaling; Methods for analysing complex physiological flow; Flow in circulatory system and tissue; Flow within distensible tubes; Shear stress and endothelial cell function; Heart-valve hemodynamics; Mass transfer and metabolism in organs and tissues; Diffusion: mass transfer between fluids, membrane and pores; Diffusion with convection or electrical potential; Microscopic and macroscopic mass balances; Transport in porous media; Transvascular transport; Transport of gases between blood and tissue; Analysis of blood oxygenators; Fluid transport in the kidneys; A whole organ approach to renal modelling; Drug transport in solid tumors; Transport in organs and organisms; Compartmental models for pharmacokinetic analyses.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
140.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	To apply mathematics, science, and engineering principles, methodologies to formulate and to solve problems at the interface of engineering and biology, physiology, including processes leading to disease states.		3										
CO2	To interpret results from formulated engineering problems derived for living systems as well as the ability to infer and to make refinement for further insights at the interaction between living and non-living materials and systems.		3										

Course Offered by BME Department

							C	urse (njjere	и бу Б	ме рер	arimeni	
CO3	To evaluate the breadth and depth across the range of engineering topics and their applications in biological, physiological problems including medical devices that enhance the quality of healthcare delivery.				3								
TEACI	HING LEARNING STRATEGY												
Teachin	ng and Learning Activities]	Engage	ement (h	ours)	
Face-to-	-Face Learning												
	Lecture								42				
	Lecture Practical / Tutorial / Studio						<u>-</u>						
	Student-Centred Learning										-		
Self-Di	rected Learning												
	Non-face-to-face learning										42		
	Revision of the previous and (or) subsequ	ent l	ectur	e at h	ome						21		
	Preparation for final examination										21		
Formal	Assessment												
	Continuous Assessment									2			
	Final Examination										3		
Total											131		
(Nume	rical method used for mapping which indic	ates :	3 as 1	high.	2 as r	nediı	ım. aı	d 1 as	low 1	evel o	f matchii	19)	

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Week Topic			
1	Introduction to transport fundamentals			
Lecture 1	Overview of the transport process and cellular transport			
Lecture 2	Application of transport process in disease pathology			
Lecture 3	An overview of hemodynamics and boundary conditions			
2	Dimensionless numbers	CT – 1, Final		
Lecture 4	The Buckingham Pi Theorem and dimensionless numbers			
Lecture 5	Dimensionless numbers in biofluid dynamics			
Lecture 6	Equation of conservation of mass and linear momentum			
3	Conservation of mass and momentum			
Lecture 7	Differential continuity equation in rectangular co-ordinates			
Lecture 8	Momentum balance and forces in fluids			

Lecture 9	Euler's, Bernoulli's, and the general form of the Navier-Stokes	rea by BME Department_
	equation	
4	Dynamic similarity and introduction to pulsatile flow	
Lecture 10	Relationship between Navier Stokes and Hagen– Poiseuille equation	
Lecture 11	Dynamic similarity and non-dimensionalizing the Navier-Stokes equation	
Lecture 12	Introduction to oscillating flow in blood vessels	
5	Pulsatile flow	
Lecture 13	Velocity profile in pulsatile flow	
Lecture 14	Velocity profile in pulsatile flow	Midterm, Final
Lecture 15	Volumetric flow rate in pulsatile flow	
6	Pulsatile flow continued	
Lecture 16	Velocity-pressure phase lag in pulsatile flow	
Lecture 17	Womersley number and entrance length in physiological flows	
Lecture 18	Introduction to flow in curved vessels, Dean number and secondary flows	
7	Flow in curved vessels	
Lecture 19	Flow separation, adverse pressure gradient, and flow in branching vessels	
Lecture 20	Blood flow and velocity profiles in major arteries	
Lecture 21	Modeling and visualizing blood flow	
	Midterm Break	
8	Transport in Porous Media	
Lecture 22	Porosity, Tortuosity, and Volume fraction	
Lecture 23	Fluid flow in porous media	CT – 2, Final
Lecture 24	Solute transport in porous media	
9	Mass Transport in Biological System	
Lecture 25	Conservation and constitutive relation	
Lecture 26	Diffusion, Diffusion coefficient, Steady-state and unsteady diffusion	
Lecture 27	Diffusion-limited reaction	
10	Diffusion with Convection or Electrical Potential	
Lecture 28	Fick's law, Dimensional analysis, Electrolyte transport	
Lecture 29	Diffusion and convection, mass transfer coefficients	
Lecture 30	Microscopic and macroscopic mass balances across membranes	
11	Transport of Gases between Blood and Tissue	
Lecture 31	Oxygen-Hemoglobin equilibria	
Lecture 32	Dynamics of oxygenation of blood and oxygen delivery in tissue	CT – 3, FINAL
	Nitric oxide production and transport in tissue	

Lecture 33	Whole-organ approach to renal modeling	
12	Drug Transport in Solid Tumors	
Lecture 34	Introduction to drug delivery in cancer treatment	
Lecture 35	Analysis of transvascular and interstitial fluid transport	
Lecture 36	Interstitial hypertension in solid tumor	
13	Drug Transport in Solid Tumors, and Pharmacokinetics	
Lecture 37	Analysis of interstitial transport of solutes	
Lecture 38	Consideration in Pharmacokinetics	
Lecture 39	Compartment models in pharmacokinetic analysis	FINAL
14	Transport in Organs and Organisms	FINAL
Lecture 40	Physiologically based pharmacokinetic models	
Lecture 41	Review	
Lecture 42	Review	

Components Grading			CO	Blooms Taxonomy
		Grading		Breeins Takeneiny
Class Test/ Assignment Continuous 1-3		20%	CO1, CO3, CO4	C2, C4
Assessment (40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
	E: 1E		CO 1	C2
Einal			Final Exam 60%	
rinai Exam		60%	CO 3	C2
			CO 4	C4
Total Marks 100%		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1.Truskey, Yuan, and Katz, Transport Phenomena in Biological Systems, Second Edition, Pearson Education, Inc. 2.Johnson and Ethier, Problems in Biomedical Fluid Mechanics and Transport Phenomena, Cambridge University Press.

REFERENCE SITE

https://classroom.google.com/u/0/c/NDQzMzQ1NDQzNjla

COURSE INFO	ORMATION		
Course Code	: BME 311	Lecture Contact Hours	: 3.00
Course Title	: Embedded Systems and	Credit Hours	: 3.00
	Interfacing		. 3.00

Course Code: CSE 291

Course Title: Computer Programming

Course Code: CSE 292

Course Title: Computer Programming Lab

Course Code: EECE 391

Course Title: Digital Electronics Course Code: EECE 392

Course Title: Digital Electronics Lab

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to expose students to the field of embedded systems and to provide a knowledge foundation which will enable students to pursue a career in relevant fields. Key concepts of hardware-software interfacing control architectures, debugging, and communication protocols will be discussed in this course. Students will be familiar with different firmware architectures and can apply their knowledge in relevant fields such as; clinical device development and robotics in healthcare.

OBJECTIVE

- **5.** To identify and understand fundamentals of microprocessors, microcontrollers, communication protocols and embedded firmware.
- **6.** To apply the fundamental concepts of embedded engineering
- 7. To analyze the various firmware architectures and systems
- **8.** To evaluate various large scale embedded systems

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify and understand the fundamentals of microprocessors, microcontrollers, communication protocols and embedded firmware.	C1, C2	1,2	1	-	3	T, F
CO2	Be able to apply the fundamental concepts of embedded engineering.	С3	2	1,3	-	3	T, F
СОЗ	Be able to analyze the various firmware architectures and systems.	C4	2	1	-	5	MID, F
CO4	Be able to evaluate various large scale embedded systems	C5	4	1,3	-	5	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
C1 Itellielliet	C2 Chacistana	C5 Tippiy	C i I i i i i i i i i i i i i i i i i i	1 C5 Evaluate	Co Create

COURSE CONTENT

Introduction to Embedded System: Introduction to Embedded Engineering, Chronological development of Firmware and Embedded Technology, Possible Implementation in Healthcare, Review on Digital Techniques: Bit and Bytes, Memory, Number systems, Additions, Subtractions, Multiplications, Boolean Algebra, Divisions, Logic Gates, Combinational Circuits, Decoders, Encoders, Bit and Bytes, Memory, Number systems, Additions, Subtractions, Multiplications, Boolean Algebra, Divisions. Microprocessors and Microcontrollers: Flags, Resistors, Processor Types, Processor Architecture, Instruction Sets, Addressing Modes, SAP, 8086 Microprocessors, Memory, Memory Architecture, Virtual Memory, DMA and DMA Controller, AVR and ARM controllers, Overview of Developmental Microcontroller and Microprocessors, Thread, Interrupts, Programmable Timers, Multitasking, Workflow and Architecture of 16 bit/32bit PIC Firmware Programming: Assembly Language: Basic Assembly, Bit Operators, Sub Programs, Switch Day, Arrays, Streuts, Instruction sets, Loops, Conditional Statements. (Higher Level Language; Python: Data Types, python Data Structure, Functions, Object Oriented Programming, Encapsulation, Abstraction, Inheritance, Polymorphism Or C++/objective C: Data Types, Data Structure, Struc, Encapsulation, Abstraction), Inheritance Firmware Architecture, Reset Circuit, Watchdog Timer. Advanced Systems: Operating Systems, Real Time OS, Virtual Machine, FPGA, Clustering, Master Slave Topology, Multithread Processors, IoT Architecture, Medical robotics

SKILL MAPPING

No. Course Learning Outcome		PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to identify and understand the fundamentals of microprocessors, microcontrollers, communication protocols and embedded firmware.	3	3										
CO2	Be able to apply the fundamental concepts of embedded engineering.		3										
СОЗ	Be able to analyze the various firmware architectures and systems.		3										
CO4	Be able to evaluate various large scale embedded systems				4								

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

|--|

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHED		тей бу Вім'ї. Деранітені
Week	Topic	Assessment
1	Motivation and course introduction	
Lecture 1	Introduction to Embedded Engineering, Chronological development of Firmware and Embedded Technology,	
	Importance of Embedded Engineering in Healthcare	
Lecture 2	Review of Bit and Bytes, Subtractions, Multiplications,	
	Division, Boolean Algebra	
Lecture 3	Review of Logic Gates, Combinational Circuits, Decoders, Encoders	
2	Introduction to microprocessors	CT – 1, Final
Lecture 4	Microprocessor Fundamentals, Types of Processors	
Lecture 5	Processor architecture	
Lecture 6	Simple As Possible (SAP) Architecture	
3	Microprocessor Fundamentals	
Lecture 7	Overview of 8086 Microprocessor	
Lecture 8	8086 Microprocessor Instruction sets	
Lecture 9	8086 Microprocessor Addressing Modes	
4	Basic Embedded Firmware	
Lecture 10	Assembly Language – 1	
Lecture 11	Assembly Language – 2	
Lecture 12	Assembly Language – 3	
5	Higher Level Embedded Firmware	
Lecture 13	Introduction to Data Types, Variable, Operators, If-else, Lists,	
	Functions and basic syntax	
Lecture 14	Object-Oriented Programming	
Lecture 15	Object-Oriented Programming	
6	Communication Protocols	
Lecture 16	Intro to Computer Networking and Networking Layers, Bus	Midterm, Final
T . 17	Interface, I/O Hardware and Interface, Peripheral Interfacing,	
Lecture 17	Wired Communication Protocols (USB, UART, I2C, SPI, CAN)	
Lecture 18	Wireless Communication Protocols (Bluetooth, GSM,	
2000000 10	ZigBEE, BLE and others)	
7	Sensors, Actuators and Interfacing	
Lecture 19	Introduction to Sensors and Actuators, Fundamentals of	
	Sensors and Different Types of Sensors	
Lecture 20	Fundamentals of Actuators and Different Types of Actuators,	
	Interfacing of Sensors and Actuators	
Lecture 21	Interfacing of Sensors and Actuators (Continued)	
	Midterm Break	
8	Overview of Memory	
Lecture 22	Introduction to Memory, Memory Architecture	
Lecture 23	Memory Hierarchy, Memory Interface	

Lecture 24	Virtual Memory, DMA (Direct Memory Access) and DMA	тей бу БМЕ Дерантет
	Controller	
9	Threads, Interrupts, Timer and Multitasking	
Lecture 25	Basic Concepts and Applications of Threads, Overview of Interrupts	CT – 2, Final
Lecture 26	Introduction to Programmable Timer fundamentals, Fundamental Concepts of Programmable Interrupt Controller,	
Lecture 27	Overview of Multitasking in Microprocessors and Embedded Systems	
10	Microcontrollers Basics, Microcontroller	
	Architectures and Application	
Lecture 28	AVR and ARM Microcontrollers	
Lecture 29	Overview PIC Microcontroller	
Lecture 30	Overview PIC Microcontroller (continued)	
11	Advance Firmware Architecture and Advance Concepts in	
	Embedded Engineering	
Lecture 31	Reset Circuit , Watchdog Timer, Reliable Architecture in	
	Firmware and system design approaches	
Lecture 32	Reliable Architecture in Firmware and system design	
	approaches (continued)	
Lecture 33	Operating Systems Basics, RTOS, Virtual Machines	
12	FPGA Boards	CT – 3, FINAL
Lecture 34	Introduction to FPGA Boards	
Lecture 35	Fundamentals of FPGA Boards	
Lecture 36	Applications of FPGA Boards	
13	Distributed Systems, Artificial Intelligence and IoT	
	Architecture in Embedded Systems	
Lecture 37	Clustering, Master-Slave Topology, Multithread Processors	
Lecture 38	IoT Architecture and Web Assembly	
Lecture 39	AI Algorithms in microcontrollers and microprocessors	
14	Embedded Systems in Healthcare, R&D work process and	FINAL
	Production Line Designing	
Lecture 40	Current Trends in Embedded Systems in Healthcare	
Lecture 41	Overview of Robotics in Healthcare, Advanced Surgical	
	Procedures and Medical Device Development	
Lecture 42	R&D work Process and Production Line Designing	
ASSESSMENT S	STRATEGY	

			60	DI T
Comp	ponents	Grading	CO	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2	C1,C2,C3
(40%)	Class Participation	5%	CO1	C1,C2
	Midterm	15%	CO1,CO2	C1,C2,C3
			CO 1	CO 1
Einal	Exam	60%	CO 2	CO 2
rmai	Exam	00%	CO 3	CO 3
			CO 4	CO 4
Total	Marks	100%		-

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 3. Onatham W. Valvano, Brookes/Colem Embedded Mircrocomputer Systems: Real Time Interfacing, Pacific Grove: 2000
- 4. Charles Marut and Ytha Y. YuAssembly Language Programming and Organization of the IBM PC: McGraw-Hill, 1992. ISBN: 0071128964, 9780071128964

REFERENCE BOOKS

- 3. Douglas V Hall, Microprocessors and Interfacing
- 4. Mohamed Rafiquzzaman, Microprocessors and Microcomputer-based System Design, CRC Press, 1995

REFERENCE SITE

--

COURSE INFORMATION

Course Code	: BME 312	Lecture Contact Hours	: 3.00
Course Title	: Embedded Systems and Interfacing Sessional	Credit Hours	: 1.50

PRE-REQUISITE

Course Code: BME 311

Course Title: Embedded Systems and Interfacing

Course Code: CSE 291

Course Title: Computer Programming

Course Code: CSE 292

Course Title: Computer Programming Lab

Course Code: EECE 391 Course Title: Digital Electronics Course Code: EECE 392

Course Title: Digital Electronics Lab

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of embedded engineering in the domain of biomedical device development and interfacing.

OBJECTIVE

This course aims to enhance students' knowledge on the basic principles of fluid mechanics and heat transfer design problem solution.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply the fundamental concepts of embedded engineering.	С3	2	-	1,3	3	T, Q, R
CO2	Be able to analyze the various firmware architectures and systems.	C4	2	-	1	5	T, Q, R, ASG
CO3	Be able to evaluate various large scale embedded systems	C5	4	-	1,3	5	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
CI Itelliellicei	C2 Chacistana	1 CS TIPPII	C 111141 20	25 Evaluate	CO CICALO

COURSE CONTENT

Boolean functions and logic gates, interfacing digital lighting display with microprocessor, stepper motor control with 8086 microprocessor, introduction to developmental boards, stepper motor control with developmental boards, introduction to single board computers, capturing video feedback with single board computers, USB communication, Bluetooth communication, biosignal acquisition with developmental boards and single board computers, implementation of threads, programmable timers, clusters, introduction and overview of 16bit PIC microcontroller, PCB designing.

SKILL MAPPING

No. Course Learning Outcome		PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply the fundamental concepts of embedded engineering.		3										
CO2	Be able to analyze the various firmware architectures and systems.		3										
СОЗ	Be able to evaluate various large scale embedded systems				3								

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	

Course Offered by BME Department

				Course Of	fered by BME Department		
	tinuous Assessm	ent			1		
Lab	Test				1		
Quiz					0.75		
Viva	ı				0.25		
Total					70		
TEACHING	METHODOL	OGY					
Lecture and o	liscussion, Co-o _l	perative and coll	aborative method, Problem ba	sed method			
COURSE SO	CHEDULE						
Week		L	ecture Topics		Assessment		
1	Implementation		inctions using logic gates		110000001110110		
2	-		play (Dot-matrix) with microp	processor			
3			8086 Microprocessor				
4	1 **		opment Board and Stepper Mo	otor Control			
	with Arduino		1		Report, Assignment, Lab		
5			nd Video Feed Capture with R	aspberry Pi	Test, Quiz, Viva		
6	USB Comm	unication Betw	een Arduino and Raspber	ry Pi and			
	Interfacing w	ith Temperature	Sensor				
7	PCB Designin						
	1		Midterm Break	•			
8	Introduction	To IoT: Bluetoo	oth Communication and Stori	ng of Data			
		ry Pi and Arduin					
9	_	quisition and D	Display with Arduino and Ra	aspberry Pi			
	Cluster				Report, Lab Test, Quiz, Viva		
10	1 *		Programmable Timer with Ra	spberry Pi-			
	Arduino Clus						
11			crocontroller and LED Switch	ing with 16			
10	bit PIC Micro						
12	Project Preser	ntation					
13 14	Lab Test	_					
	Quiz and Viv						
ASSESSWIE	NT STRATEGY	<u>Y</u>					
		Grading	CO	Б	Blooms Taxonomy		
Comp	onents						
Continuous	Report	20%	CO1, CO2, CO3	C3, C4, C5			
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3		C3, C4, C5		
Final Exam	Lab Test 20% CO1, CO2, CO3			C3, C4, C5			
(60%)	Quiz	30%	CO1, CO2, CO3		C3, C4, C5		
	Viva	10%	CO1, CO2, CO3		C3, C4, C5		
T-4-1	Marks	100%					

TEXT BOOKS

1.Onatham W. Valvano, Brookes/Colem Embedded Mircrocomputer Systems: Real Time Interfacing, Pacific Grove: 2000

2. Charles Marut and Ytha Y. YuAssembly Language Programming and Organization of the IBM PC: McGraw-Hill, 1992. ISBN: 0071128964, 9780071128964

REFERENCE BOOKS

1.Douglas V Hall, Microprocessors and Interfacing

2. Mohamed Rafiquzzaman, Microprocessors and Microcomputer-based System Design, CRC Press, 1995

REFERENCE SITE

--

COURSE INFO	COURSE INFORMATION								
Course Code	: BME 313	Lecture Contact Hours	: 3.00						
Course Title	: Biomedical Image Processing	Credit Hours	: 3.00						

BME 305: Biomedical Signal Processing

BME 307: Medical Imaging

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to prepare students to learn the basic knowledge regarding the processing techniques of medical images including filtering, transformation, compression, storage, reconstruction, segmentation, etc. to enhance its quality so that the medical image-based diagnosis process could be aided.

OBJECTIVE

- 3. To provide knowledge about the different processing techniques regarding medical images.
- 4. To equip students theoretically skilled in medical image processing to solve the real-life problem related to imaging-based clinical diagnosis.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's	PO	СР	CA	KP	Assessment	
		Taxonomy					Methods	
	Be able to understand different steps of							
CO1	biomedical image processing steps and their	C1	1	1	-	1,3	T, F	
	applications in clinical diagnosis.							
CO2	Be able to understand the fundamental	C2	1	1,3		1.2	тг	
CO2	image processing technique.	C2	1	1,3	-	1,3	T, F	
	Be able to apply the basic image processing							
CO3	techniques with a modified form to medical	C3	5	1	-	1	MID, F	
	images.							
	Be able to analyze the medical image related							
CO4	to real-life problems and possible processing	C4	2	1,3	-	1,3	T, F	
	techniques for aiding diagnosis.							

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Origin of Medical Images and Processing: Medical image sources, Properties, Processing challenges, Processing steps, Image representation, Hardware, and software requirements. Image as Two-dimensional (2D) systems: Image as a 2D signal, 2D sequences, and systems, Vector-space image representation, superposition and convolution, 2D Sampling theory, Image quantization, Image perception, Smoothing & Sharpening, Spatial filtering, Quality measures. Image Transforms: 2D Fourier Transform, Sine and Cosine transformation, Hadamard transformation, Slant, and KL transformation. Colors in Image: Concept of monochrome and color images, Color Fundamentals, Color Models, Pseudo Color Image Processing, Basics of Full-Color Image Processing, Color Transformations.

Image Enhancement: Image Enhancement in spatial domain: Gray Level Transformations, Histogram Processing, Smoothing and Sharpening Spatial Filters; Image Enhancement in the frequency domain: Smoothing Frequency-

Domain Filters, Sharpening Frequency Domain Filters. **Image Reconstruction:** Reconstruction concept of medical images, Image reconstruction in X-Ray, Image reconstruction in CT, Fourier slice theorem, Back projection algorithm for parallel projection data, Filtered-back projection algorithm, Image Reconstruction in Magnetic Resonance Imaging, Image Reconstruction in Ultrasound Imaging. **Image segmentation:** Feature Extraction, Edge Detection, Boundary Extraction, Region Representation, Moment Representation, Shape Features, Scene Matching Image Segmentation, Threshold-based segmentation, Region growing segmentation, Active contour model for segmentation.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able tounderstand different steps of												
CO1	biomedical image processing steps and	3											
	their applications in clinical diagnosis.												
CO2	Be able to understand the fundamental	3											
CO2	image processing technique.	3											
	Be able to apply the basic image												
CO3	processing techniques with the modified					3							
	form to medical images.												
	Be able to analyze the medical image												
CO4	related to real-life problems and possible		2										
1004	processing techniques for aiding		3										
	diagnosis.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Origin of Medical Images and Processing	
Lecture 1	Medical image sources, Properties	
Lecture 2	Processing challenges, Processing steps	
Lecture 3	Image representation, hardware and software requirements	
2	Image as Two-dimensional (2D) systems	

Lecture 4	Image as a 2D signal, 2D sequences, and systems	јјегей бу ВМЕ Дерантет
Lecture 5	Vector-space image representation	CT – 1, Final
Lecture 6	superposition and convolution	,
3	Image as Two-dimensional (2D) systems	
Lecture 7	2D Sampling theory, Image quantization, Image perception	
Lecture 8	Smoothing & Sharpening, Quality measures	
Lecture 9	Spatial filtering	
4	Image Transforms	
Lecture 10	2D Fourier Transform	
Lecture 11	Sine transformation	
Lecture 12	Cosine transformation	
5	Bio-image compression algorithms	
Lecture 13	Hadamard Transformation	
Lecture 14	Slant Transform	
Lecture 15	KL Transform	
6	Colors in Image	Midterm, Final
Lecture 16	Concept of monochrome and color images	
Lecture 17	Color Fundamentals	
Lecture 18	Color Models	
7	Colors in Image	
Lecture 19	Pseudo Color Image Processing	
Lecture 20	Basics of Full-Color Image Processing	
Lecture 21	Color Transformations	
	Midterm Break	
8	Image Enhancement (Spatial Domain)	
Lecture 22	Gray Level Transformations, Histogram Processing	
Lecture 23	Smoothing Spatial Filters	
Lecture 24	Sharpening Spatial Filters	
9	Image Enhancement (Frequency Domain)	
Lecture 25	Smoothing Frequency-Domain Filters	
Lecture 26	Smoothing Frequency-Domain Filters	CT – 2, Final
Lecture 27	Sharpening Frequency Domain Filters	
10	Image Reconstruction	
Lecture 28	Reconstruction concept of medical images	
Lecture 29	Image reconstruction in X-Ray	
Lecture 30	Image reconstruction in CT	
11	Image Reconstruction	
Lecture 31	Fourier slice theorem	
Lecture 32	Back projection algorithm for parallel projection data	
Lecture 33	Filtered-back projection algorithm	CT – 3, FINAL
12	Image Reconstruction	
Lecture 34	Image Reconstruction in Magnetic Resonance Imaging	
Lecture 35	Image Reconstruction in Ultrasound Imaging	
Lecture 36	Feature Extraction	
13	Image segmentation	TEINI A I
Lecture 37	Edge Detection, Boundary Extraction	FINAL

Lecture 38	Region Representation, Moment Representation		
Lecture 39	Shape Features, Threshold-based segmentation		
14	Image segmentation		
Lecture 40	Scene Matching Image Segmentation		
Lecture 41	Region growing segmentation,		
Lecture 42	Active contour model for segmentation		

Comp	Components		СО	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	Grading 20%	CO1, CO3, CO4	C2, C4
Assessment (40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
			CO1	C2
Eina!	Evans	60%	CO2	C3
Final Exam		00%	CO3	C2
			CO4	C4
Total Marks		100%		•

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 3. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Fourth Edition, Pearson, 2017.
- 4. Atam P. Dhawan, Medical Image Analysis, Second Edition, IEEE Series in Biomedical Engineering, 2011.

REFERENCE BOOKS

1. Jiri Jan, Medical Image Processing, Reconstruction and Restoration: Concept and Method, Taylor and Francis Publisher, 2006.

REFERENCE SITE

COURSE INFORMATION								
Course Code	: BME 314	Lecture Contact Hours	: 3.00					
Course Title	: Sessional on Biomedical Image Processing	Credit Hours	: 1.50					

BME 307: Medical Imaging

BME 313: Biomedical Image Processing

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to furnish students' knowledge of Medical Imaging and Biomedical Image Processing including quality assurance, quality control, calibration, and maintenance of medical imaging devices, as well as the reconstruction and processing of medical images.

OBJECTIVE

- 3. To perform the quality assurance, quality control, calibration, and maintenance of medical imaging modalities
- 4. To process the problems regarding the medical image reconstruction and quality enhancement

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the procedure of quality assurance quality control, calibration and maintenance of medical imaging modalities practically.	C2	1	-	1	1	T, Q, R
CO2	Be able to apply and analyze the construction and processing mechanism of the medical images.	C3, C4	2	-	1, 3	1, 2	T, Q, R, ASG
СОЗ	Be able to apply different algorithms to the medical images to solve imaging-based diagnosis	C2	5	-	1	1	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction to Medical Imaging, their modalities, and the relevance to Biomedical Engineering, Observation the imaging techniques of different medical imaging modalities and learning about quality control system as per guideline of IAE and NCRT, Fundamental image processing techniques by MATLAB, Processing techniques of an X-ray Image, Radon transformation and Sinogram for the CT Imaging, Back projection algorithm to reconstruct CT image, Image Segmentation, Case study on medical images to improve the image quality for aiding diagnosis.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the procedure of quality assurance quality control, calibration, and maintenance of medical imaging modalities practically.	3											
CO2	Be able to apply and analyze the construction and processing mechanism of the medical images.		3										
CO3	Be able to apply different algorithms to the medical images to solve imaging- based diagnosis					3							

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment
1	Introduction to Medical Imaging, their modalities, and the relevance to	
	Biomedical Engineering	Report, Assignment, Lab
2	A study tour to a medical imaging center to observe the imaging	Test, Viva
	techniques of X-ray and CT and learning about quality control system	,
	as per guideline of IAE and NCRT.	

3	A study tour to a medical imaging center to observe the techniques of MRI and Ultrasound imaging and learning about quality control system as per guideline of IAE and NCRT.	
4	A study tour to a medical imaging center to observe the techniques of Nuclear Imaging and learning about quality control system as per guideline of IAE and NCRT.	
5	Introductory practice on the fundamental image processing techniques by MATLAB	
6	Experiment on the processing techniques of an X-ray Image	
7	Experiment on the Radon transformation and Sinogram for the CT Imaging	
	Midterm Break	
8	Design and implementation of the back-projection algorithm to reconstruct CT image	
ļ	Teconstruct of mage	
9	Experiment on the segmentation of the brain MRI images	Daniel Lah Tark Onia
9		Report, Lab Test, Quiz, Viva
-	Experiment on the segmentation of the brain MRI images Case study on image processing to improve the image quality for aiding	=
10	Experiment on the segmentation of the brain MRI images Case study on image processing to improve the image quality for aiding diagnosis. Case study on image processing to improve the image quality for aiding	=
10	Experiment on the segmentation of the brain MRI images Case study on image processing to improve the image quality for aiding diagnosis. Case study on image processing to improve the image quality for aiding diagnosis.	=

Components Grading		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0070)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total Marks 100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1.Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Fourth Edition, Pearson, 2017.

2. Atam P. Dhawan, Medical Image Analysis, Second Edition, IEEE Series in Biomedical Engineering, 2011.

REFERENCE BOOKS

1.Jiri Jan, Medical Image Processing, Reconstruction and Restoration: Concept and Method, Taylor and Francis Publisher, 2006.

REFERENCE SITE

COURSE INFORMATION						
			: 3.00			
Course Code Course Title	: BME 315 : Biomaterials	Lecture Contact Hours Credit Hours	: 3.00			

CHEM 103 - General Chemistry; CHEM 125 - Physical and Bio-organic Chemistry; BME 203 - Biochemistry

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers the following modules: Structure of solids, characterization of biomaterials, metallic implant materials, ceramic implant materials, synthetic polymeric materials, composite biomaterials and material-tissue interactions, sterilization of biomaterials, structure and function of natural biomaterials.

OBJECTIVE

- 3. To introduce students to different implants, prosthetic and functional materials, investigate the materials' properties including their designs and applications.
- 4. To investigate both synthetic and natural polymers, and explore biomaterial-tissue interaction in detail with a focus on applications in tissue engineering and cardiology.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify different types of biomaterials	C2	2	-	-	1	T, MID
CO2	Be able to understand and analyze the properties of biomaterials	C2	1	-	-	1	T, MID, F
СОЗ	Be able to comprehend the interactions of cell and tissues with biomaterials based on biomaterial properties and reactivity	C5	4,2	-	3	1	MID, F
CO4	Be able to design and apply different types of biomaterials to solve biomedical problems	C3	3	-	-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Understand C3 - Apply C4 - Analyze C5 - Evaluate

COURSE CONTENT

The structure of solid: Structure of solids overview, classification of solids, classification of solids based on structure, lattice imperfections and defects

Properties and Characterization of Materials: Thermal properties phase diagrams, strengthening by heat treatments, surface properties and adhesion. Electrical properties, optical properties, x-ray absorption, acoustic and ultrasonic properties, density and porosity and diffusion properties, XPS, XRD, spectroscopy, SFM, AFM, optical characterization of biomaterials

Metallic Biomaterials: Stainless steels, co-based alloys, Ti and Ti-based alloys, dental metals, other metals, corrosion of metallic implants.

Ceramic Implant Materials: Structural property relationship of ceramics, aluminum oxides (alumina), zirconium oxides (zirconia), calcium phosphate, glass ceramics, other ceramics, carbons, deterioration of ceramics.

Synthetic Polymeric Material: Basic structure, classifications (thermoplasts, thermoset, and elastomers), different physical and mechanical properties, and various uses of biomaterials. Natural polymeric materials, biodegradable polymers, applications and functions

Composites as Biomaterials: Structure, mechanics of composites, applications of composite biomaterials, biocompatibility of composite, biomaterials.

Biological response to biomaterials: biocompatibility, toxicity of biomaterials, host response of biological materials to biomaterials, sterilization of biomaterials, applications of biomaterials in cardiology and tissue engineering

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	CO1 Be able to identify different types of 3												
	biomaterials												
CO2	Be able to understand and analyze the	3											
002	properties of biomaterials)											
	Be able to investigate the interactions of												
CO3	cell and tissues with biomaterials based on		3		3								
	biomaterial properties and reactivity												
	Be able to design and apply different												
CO4	types of biomaterials to solve biomedical			3									
	problems												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	42				
Practical / Tutorial / Studio	-				
Student-Centred Learning	-				
Self-Directed Learning					
Non-face-to-face learning	42				
Revision of the previous and (or) subsequent lecture at home	21				
Preparation for final examination	21				
Formal Assessment					
Continuous Assessment	2				
Final Examination	3				
Total	131				

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Course Introduction and the structure of solids	
Lecture 1	Motivation & introduction to biomaterials	
Lecture 2	Overview of classification of Solids	
Lecture 3	Overview of structure of solids	

Course Offered by BME Department

2	Structure solids	erea by BME Department
Lecture 4	Classification of solids according to structure	
Lecture 5	Lattice imperfections and defects	
Lecture 6	Mechanical testing methods, tensile and compression properties of	CT – 1 and Midterm,
Lecture o	biomaterials	Final
3	Mechanical properties and characterization of biomaterials	
Lecture 7	Shear properties, stress-strain properties and analysis of biomaterials	
Lecture 8	Bending properties, time independent properties, creep and fatigue	
Lecture 8	of biomaterials	
Lecture 9	Phase Diagrams 1	
4	Thermal processing and properties of biomaterials	
Lecture 10	Phase Diagrams 2	
Lecture 11	Thermal properties and heat treatment of biomaterials	
Lecture 12	Surface properties and adhesion	
	Physical Properties of Biomaterials	
Lecture 13	Electrical and optical properties of biomaterials	
Lecture 13	X-ray diffraction, ultrasonic properties, density, porosity and	
Lecture 14	diffusion properties	
Lecture 15	X-ray diffraction, Bragg's Law, crystal structure determination	
6	Characterization of biomaterials	
Lecture 16	XPS, spectroscopy techniques	Midterm, Final
Lecture 17	AFM, SFM, SEM, and optical techniques	
Lecture 18	Different types of metallic biomaterials - stainless steel, Co-Cr alloy,	
Lecture 10	Titanium, dental implants	
7	Metallic biomaterials	
Lecture 19	Different types of metallic biomaterials - stainless steel, Co-Cr alloy,	
Lecture 17	Titanium, dental implants	
Lecture 20	Properties, fabrication and corrosion of metallic implants	
Lecture 21	Revision	
	MIDTERM	
8	Ceramic Biomaterials	
Lecture22	Structural Property relationship of ceramics	
Lecture 23	Properties and functions of alumina, zirconia, calcium phosphate	
Lecture 24	Glass ceramics, other ceramics, degradation of ceramics	
9	Polymeric biomaterials	
Lecture 25	Structure, classification, properties and processing of polymeric	
	materials	
Lecture 26	Structure, classification, properties and processing of polymeric	
	materials	
Lecture 27	Natural polymeric materials – function and properties	
10	Polymeric biomaterials	CT – 2, FINAL
Lecture 28	Hydrogel – properties, functions and applications	
Lecture 29	Biodegradable polymers – properties, functions and applications	
Lecture 30	Polymeric biomaterials in biosensor applications	
11	Composite Biomaterials and Biocompatibility	
Lecture 31	Structure of composite biomaterials	
Lecture 32	Composite biomaterials – functions, properties, and applications	
Lecture 32	composite ofornaterials Tunetions, properties, and applications	

Lecture 33	Biocompatibility and toxicity of biomaterials	
12	Biomaterial interactions with proteins/tissues	
Lecture 34	Protein-biomaterial interactions	
Lecture 35	Cell/tissue-biomaterial interactions	
Lecture 36	Cell/tissue-biomaterial interactions	
13	Biological response to biomaterials	
Lecture 37	Host response (biological response) to biomaterials	
Lecture 38	Toxicity and immune response	
Lecture 39	Sterilization methods and handling of biomaterials	CT – 3, FINAL
14	Applications of biomaterials	
Lecture 40	Tissue engineering scaffolds and stem cell engineering	
Lecture 41	Cardiac applications of biomaterials	
Lecture 42	Revision	
	FINAL EXAMINATION	·

			CO	Blooms Taxonomy		
Components		Grading	20			
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3	C2		
(40%)	Class Participation	5%	CO2	C4		
	Midterm	15%	CO1, CO2	C2, C4		
			CO 1	C2		
Final	Exam	60%	CO 2	C4		
			CO 3	C2		
Total Marks 100%		100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 3. Biomaterials, Joyce Y Wong, Joseph D Bronzino, CRC Press (latest edition)
- 4. Mechanics of Biomaterials: Fundamental Principles for Implant Design (1st edition), Lisa A Pruitt, Ayyana M. Chakravartula, Cambridge University Press

REFERENCE BOOKS

2. Materials Science and Engineering - An Introduction, 4th Ed,WD Callister, Jr.

REFERENCE SITE

_

COURSE INFORMATION						
Course Code	: BME 316	Lecture Contact Hours	: 3.00			
Course Title	: Biomaterials Sessional	Credit Hours	: 1.50			

Course Code: BME 315 Course Title: Biomaterials

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the characterization of mechanical, physical, and chemical properties, such as young's modulus, ductility, porosity, corrosion, and surface topography of biomaterials.

OBJECTIVE

This course aims to introduce students to biomaterial testing and the factors influencing their functions.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to investigate different biomaterials to determine their mechanical properties.	C4	4		1	1, 2	T, Q, R
CO2	Be able to investigate different biomaterials to determine their microstructural properties.	C4	4		1	1, 2	T, Q, R
СОЗ	Be able to investigate metallic biomaterials to determine their biochemical (corrosion) property.		4		1	1, 2	T, Q, R
CO4	Be able to design , develop and test synthetic biomaterials for biomedical applications.	C6	3,10		1	5	PR, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
-------------------------------	------------	--------------	---------------	-------------

COURSE CONTENT

Determination of elasticity and Young's modulus, stress and strain analysis, Tensile test, compressive test, creep test, fatigue test, torsion test, shear test, ductility test, bending test, impact test, corrosion test, hardness test, indentation test, etch test, metallurgical microscopic analysis, surface topography and porosity, hydrogel and composite biomaterial fabrication, and FTIR characterization of biomaterials.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to investigate different biomaterials to determine their mechanical properties.				3								
CO2	Be able to investigate different biomaterials to determine their microstructural properties.				3								
СОЗ	Be able to investigate metallic biomaterials to determine their biochemical (corrosion) property.				3								
CO4	Be able to design , develop and test synthetic biomaterials for biomedical applications.			3							2		

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Lecture Topics	Assessment	
1	Introduction to biomaterials lab, laboratory techniques, laboratory rules.		
	Introduction to polymer biomaterials	Report, Lab Test, Quiz,	
2	Preparation and synthesis of hydrogel	Viva	
3	Physical property and qualitative assessment of the hydrogel. Preparation of hydrogel for lyophilization and degradation test	VIVU	

4	Analysis of the lyophilized hydrogel and water absorption test Measurement of the degradation test	
5	Measurement of water absorption test and degradation test Preparation for FTIR analysis and tensile test	
6	FTIR analysis of hydrogels	
7	Tensile testing of hydrogels	
	Midterm Break	
8	Lab Test 1	
9	Preparation and fabrication of bone cement	Report, Lab Test, Quiz,
10	Compression analysis of bone cement	Viva
11	Three point bending of bone cement/other relevant composite/biological materials	
12	UV-VIS spectrophotometry analysis of different concentrations of solutions	Project, Presentation
13	Optical property measurement of different materials	
14	Quiz and Viva	

Components Grading		СО	Blooms Taxonomy		
Continuous Assessment (30%)	Report	20%	CO1, CO2	C4	
	Class Participation	10%	CO1, CO2, CO3	C4, C6	
	Lab Test	15%	CO1, CO2	C4	
Final Exam	Project	15%	CO3	C6	
(70%)	Quiz	30%	CO1, CO2	C4	
	Viva	10%	CO1, CO2	C4	
Total Marks 100%					

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

1. Elements of Materials Science and Engineering 6th Edition. by L. H. Van Vlack

REFERENCE SITE

_

COURSE INFORMATION							
Course Code	: BME 318	Lecture Contact Hours	: 3.00				
Course Title	: Biomedical Engineering Design Sessional	Credit Hours	: 1.50				

Course Code: BME 104

Course Title: CAD in Biomedical Engineering Sessional

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of design tools to model prototypes and develop the individual project ideas and full completion of an individual project.

OBJECTIVE

The aim of this course is to enhance student's idea about project and develop their capabilities of project management.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply modern engineering tools to develop projects to enhance healthcare facilities.	С3	3, 5	1	-	1	T, Q, R
CO2	Be able to analyze a complex problem and using engineering tools and knowledge would be able to formulate a suitable solution.	C4	2, 5	1	-	1, 2	T, Q, R, ASG
СОЗ	Be able to design and develop devices and equipment to improve healthcare facilities.	C6	3	1, 3	-	5	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Understan	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
--------------------------------	------------	--------------	---------------	-------------

COURSE CONTENT

This course exposes students to the entire design process from problem definition to prototype validation. The course is organized like a biomedical engineering company, with projects sponsored by real clients from the Medical School, Dental School, College of Engineering research labs, and local industry. This course comprises six main components:

- 1. Problem Definition Students will generate/ be assigned a project idea and expected to decompose the problem, generate design specifications, and plan out the project.
- 2. Concept Generation and Evaluation Students will use brainstorming and decision evaluation tools to generate and evaluate solutions to reach a design consensus.
- 3. Detailed Design Students will generate a paper design of their proposed prototype including device specifications, key materials and components, detailed drawings, and principles of operation with all choices justified and supported through proof-of-concept.
- 4. Fabrication and Validation Students will fabricate and conduct testing of their prototype, assess the degree to which the prototype meets the design specifications, and recommend design modifications to improve the prototype.

- 5. Project Management Students will create and update a project timeline, budget, design history file, and maintain engineering notebooks throughout all phases of the project.
- 6. Technical Communication Students will be required to describe, explain, and support the progress and solutions of their project at all phases of the design process.

SKILL MAPPING

No. Course Learning Outcome -		PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to apply modern engineering												
CO1	tools to develop projects to enhance			2		3							
	healthcare facilities.												
	Be able to analyze a complex problem												
CO2	and using engineering tools and		2			3							
002	knowledge would be able to formulate a		_				3						
	suitable solution.												
	Be able to design and develop devices												
CO3	and equipment to improve healthcare			3									
	facilities.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	7
Practical / Tutorial / Studio	35
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	-
Revision of the previous and (or) subsequent lecture at home	15
Preparation for final examination	10
Formal Assessment	
Continuous Assessment	1
Lab Test	1
Quiz	0.75
Viva	0.25
Total	70

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Lecture Topics	Assessment
1	Introduction, Course overview, Evaluation process, Form group	
2	Discussion on few proposed projects and project scope	
3	Discussion on project idea and design consideration	
4	Idea based project presentation, budget and timeline	Report, Assignment, Lab
	Define need and project scope, design requirements	Test, Quiz, Viva
5	Model generation, usability testing, engineering analysis	
6	Finalization of design with detailed drawing and computational	
	validation testing	
7	Finalization of Project and start the prototype fabrication process	
	Midterm Break	
8	Prototype fabrication review and troubleshooting	
9	Prototype verification and validation testing	Report, Lab Test, Quiz,
10	Prototype verification and validation testing	Viva
11	Draft Report Submission and Review	
12	Project Submission with complete documentation (Drawing, user	
	manual, report and design history file)	
13	Presentation	
14	Project Showcasing	

ASSESSMENT STRATEGY

Components Grad		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0076)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Robbinson C.J., Rehabilitation Engineering. CRC press 1995
- 2. Gerald E. Miller, Artificial Organs, Morgan & Claypool Publishers, 2006

REFERENCE BOOKS

- 1. Bronzino. Joseph, Handbook of biomedical engineering. CRC; 2 Sub editions, 1999
- 2. BallabioE.etal, Rehabilitation Engineering. IOS press 1993.

REFERENCE SITE

COURSE INFORMATION							
Course Code Course Title	: BME 300 : Industrial Training	Lecture Contact Hours Credit Hours	: 1.50 : 1.50				
PRE-REQUISITE							

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Training in industry, hospital or healthcare organization will be conducted for a duration of 4 weeks at the end of level 3 term 2. Students will learn how to apply their skills as a biomedical engineer in a professional setting and will undergo extensive training in preparation for their role in the industry, hospital, or healthcare facilities. The training can be arranged by the department.

OBJECTIVE

2. To learn and explore the different technical aspects and management of health-related organizations.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the role of a biomedical engineer in their respective fields	C2	6, 12	-	7	7	R, Pr
CO2	Be able to evaluate various technical aspects of biomedical equipment	C5	9, 10	2	-	7	R, Pr
СОЗ	Be able to learn and apply professional ethics, responsibilities and the norms of the engineering practice.	С3	8, 12	-	7	7	R, Pr
CO4	Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.	C6	10	-	-	7	R, Pr
CO5	Be able to apply their biomedical engineering knowledge in a professional setting	С3	9, 11, 12	1	-	6	R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 – Create

COURSE CONTENT

4 weeks of industrial training at an industry, hospital, or healthcare organization. This is obligatory for the completion of B.Sc. course. An evaluation report from the industry is to be submitted at the end of the training and accordingly to be incorporated in the tabulation sheet.

SKILL MAPPING

		1											
No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to understand the role of a												
CO1	biomedical engineer in their respective						3						3
	fields												
CO2	Be able to evaluate various technical									2	3		
CO2	aspects of biomedical equipment												
	Be able to learn and apply professional												
CO3	ethics, responsibilities and the norms								3				3
	of the engineering practice.												
	Be able to comprehend and write												
CO4	effective reports, design documentation,										3		
CO4	make effective presentations and give)		
	and receive clear instructions.												
	Be able to apply their biomedical												
CO5	engineering knowledge in a professional									3		3	3
	setting												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY						
Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning						
Lecture	7					
Practical / Tutorial / Studio	35					
Student-Centered Learning	-					
Self-Directed Learning						
Non-face-to-face learning	-					
Revision of the previous and (or) subsequent lecture at home	15					
Preparation for final examination	10					
Formal Assessment						
Continuous Assessment	2					
Final Presentation	1					
Total	70					

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method, Training.

COURSE SCHEDULE

Week	Content	Assessment
1	Industrial Training at an industry, hospital, or healthcare organization	
2	Industrial Training at an industry, hospital, or healthcare organization	Continuous Assessment,
3	Industrial Training at an industry, hospital, or healthcare organization	Report
4	Industrial Training at an industry, hospital, or healthcare organization	

Final Presentation ASSESSMENT STRATEGY

Components		Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C2, C3, C5
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C2, C3, C5
Final Exam (60%)	Final Presentation	60%	CO1, CO2, CO3	C2, C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

REFERENCE SITE

6.1.27 BME 401 Diagnostic and Therapeutic Equipment

COURSE INFO	COURSE INFORMATION							
Course Code	: BME 401	Lecture Contact Hours	: 3.00					
Course Title	: Diagnostic and Therapeutic Equipment	Credit Hours	: 3.00					
	•							

PRE-REQUISITE

BME 207: Biomedical Instrumentation and Measurements

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course aims to teach students about various diagnostic and therapeutic equipment. The course covers the following modules: cardiac equipment, neurological equipment, skeletal muscular equipment, respiratory equipment, diathermy, drug delivery systems, incubator, some special diagnostic techniques and patient monitoring.

OBJECTIVE

The objective of the course is to make the students familiarized with the medical devices used in healthcare for diagnostic and therapeutic purposes. Understand the principles of operation and identify the application areas. Also to make the students able to analyze, troubleshoot, repair, and calibrate diagnostic and therapeutic equipment.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's	PO	CP	CA	KP	Assessme
		Taxonomy					nt
							Methods
CO1	Be familiar with the various equipment used	C1	1	1	-	1	T, F
	in Diagnostic and therapeutic purposes.						
CO2	Be able to understand the principles of	C2	1	1	-	1	T, F
	various diagnostic and therapeutic equipment						
CO3	Be able to analyze, troubleshoot, repair, and	C4	2, 4	1,3	-	1,3	MID, F
	calibrate diagnostic equipment.						
CO4	Be able to analyze, troubleshoot, repair, and	C4	2, 4	1,3	-	1,3	T, F
	calibrate therapeutic equipment						
(CD (Complex Problems CA Complex Activities KD	Vnovelodao Dr	ofila T	Toot	DD 1	Project: O	Onize

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz;

ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember | C2 - Understand | C3 - Apply | C4 - Analyze | C5 - Evaluate | C6 - Create

COURSE CONTENT

Introduction to Diagnostic and Therapeutic Equipment: Definition, Difference between diagnostic and therapeutic equipment, Electrocardiograph (ECG) Machine: Principle and construction, Ambulatory Monitoring System: Principle and application, Phonocardiography, Cardiac Pacemaker, Defibrillator: Principle, types, application, risk factors, EEG recording system, Principle of MEG, Muscle & Nerve stimulators, EMG Machine, EMG Bio-Feedback Instrumentation, Ventilator: Principle, construction, types, modes of operation, testing and calibration., CPAP, BiPAP: Principle and applications, High Flow Nasal Cannula (HFNC): Principle and applications, Thermography – Recording and clinical application., Electro-surgery machine: Principle, applications, risk factors, Principles of Cryogenic technique and application, Syringe and Infusion pumps, Endoscopy, Laparoscopy: Principle, and application, Patient monitoring system, Dialysis Machine, Haemodialysis machine: principles and construction, Application and principle of Lithotripsy, Co-60 Units: Principle, and applications, Cyclotron: Principle and applications, Linear Accelerator (LINAC), Optical Coherence Tomography (OCT), Opthalmoscope, Special Diagnostic Techniques, Near-Infrared Spectroscopy (NIRS), ICU/CCU/HDU Equipment and setup, Heart Lung Machine: Need for the unit, principle, functioning of bubble, disc type and membrane type oxygenators,, finger pump, roller pump, electronic monitoring of functional parameters, Safety, maintenance and repair of biomedical equipment, Current trends in clinical engineering

SKILL MAPPING

No.	Course I corning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
	Be familiar with the various equipment												
CO1	used in Diagnostic and therapeutic	3											
	purposes.												
CO2 Be abl	Be able to learn the principles of various	3											
CO2	diagnostic and therapeutic equipment												
CO3	Be able to analyze , troubleshoot, repair,		3		3								
CO3	and calibrate diagnostic equipment.		3										
CO4	Be able to analyze , troubleshoot, repair,		2		2	2							
CO4	and calibrate therapeutic equipment			3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities Engagement (hours)

Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Topic	Assessment
1	Introduction + Cardiac equipment	
Lecture 1	Introduction to Diagnostic and Therapeutic Equipment: Definition,	
	Difference between diagnostic and therapeutic equipment	
Lecture 2	Electrocardiograph (ECG) Machine: Principle and construction	
Lecture 3		
2	Cardiac equipment	
Lecture 4	Ambulatory Monitoring System: Principle and application	CT – 1, Final
Lecture 5	Phonocardiography + Cardiac Pacemaker	
Lecture 6	Defibrillator: Principle, types, application, risk factors	
3	Neurological equipment + Skeletal muscular equipment	
Lecture 7	EEG recording system + Principle of MEG	
Lecture 8	Muscle & Nerve stimulators	
Lecture 9	EMG Machine + EMG Bio-Feedback Instrumentation	
4	Respiratory Equipment	
Lecture 10	Ventilator: Principle, construction, types, modes of operation, testing and	
Lecture 11	calibration.	
Lecture 12		
5	Respiratory Equipment	
Lecture 13	CPAP, BiPAP: Principle and applications	Midterm, Final
Lecture 14		,
Lecture 15	High Flow Nasal Cannula (HFNC): Principle and applications	1
6	Diathermy and Thermography	
Lecture 16	Thermography – Recording and clinical application.	
Lecture 17	Electro-surgery machine: Principle, applications, risk factors	
Lecture 18]	

7	Special equipme	ent	00	јегей бу БМЕ Беригитени					
Lecture 19	Principles of Cry	ogenic technic	que and application						
Lecture 20									
Lecture 21	Syringe and Infu	sion pumps							
Midterm Break									
8	Special equipme	ent							
Lecture 22	E. 4 I	Endoscopy + Laparoscopy: Principle, and application							
Lecture 23	Endoscopy + La								
Lecture 24	Patient monitoring								
9	Dialysis Machin								
Lecture 25	Haemodialysis n	nachine: princi	ples and construction		CT – 2, Final				
Lecture 26					C1 - 2, Final				
Lecture 27	Application and	principle of Li	thotripsy						
10	Radiotherapy E	quipment							
Lecture 28	Co-60 Units: Pri	nciple, and app	olications						
Lecture 29	Cyclotron: Princ	iple and applic	eations						
Lecture 30	Linear Accelerat	or (LINAC)							
11	Special Diagnos								
Lecture 31	Optical Coherence Tomography (OCT)								
Lecture 32									
Lecture 33	Opthalmoscope		CT – 3, FINAL						
12	Special Diagnos		C1 - 3, FINAL						
Lecture 34	Near-Infrared Sp								
Lecture 35									
Lecture 36	ICU/CCU/HDU	Equipment an	d Setup						
13	Heart-Lung Ma								
Lecture 37			the unit, principle, functi	ioning of bubble,					
	disc type and me								
Lecture 38	Heart Lung Mac								
Lecture 39			c monitoring of functiona		FINAL				
14	• •	ance, Repair	of Biomedical Equipmer	nt					
Lecture 40	Safety								
Lecture 41	Maintenance and								
Lecture 42	Current trends in	clinical engin	eering						
ASSESSME	NT STRATEGY								
		1	CO	Blooms	Гахопоту				
Components		Grading			J				
	Class Test/	200/	G01 G02 G04	G1 G2 A	3.4				
Continuous	Assignment	20%	CO1, CO3, CO4	C1, C2, C	C2, C4				
Assessment	1-3 Class								
(40%)	Participation	5%	CO3	C4					
	Midterm	15%	CO2	C2					
Final Exam									
r mai Exaiil		00 /0		CI					

			30 7 1
		CO 2	C2
		CO 3	C4
		CO 4	C4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGraw Hill.
- 2. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998.

REFERENCE BOOKS

 Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.

REFERENCE SITE

--

6.1.28 BME 403 Molecular Biology for Engineers

COURSE IN	FORMATION							
Course	: BME 403	Lecture Contact Hours	: 3.00					
Code	: Molecular Biology for Engineers	Credit Hours	: 3.00					
Course Title								
PRE-REQUI	SITE							
	Course Code : BME 201 Course Code : BME 203							
	Course Titile : Human Physiology Course Titile : Biochemistry							
CURRICUL	UM STRUCTURE							
	Outcome Based Education (OBE)							
SYNOPSIS/I	RATIONALE							
	The aim of this course is to presen	t the knowledge of molec	ular cell biology to engineering students					
	especially students of Biomedical E	Engineering. The course en	mphasizes conceptual appreciation of the					
	molecular interplays which are the	basis of "chemical proce	sses" in living systems. The objective of					
	the course is to provide students wit	h a comprehensive and co	ncise overview of biological science with					
	emphases on its relationship with b	oiomedical engineering. T	he course covers the following modules:					
	DNA, chromosomes, RNA, protein	, genetics, gene expressio	n					
OBJECTIVE	ES							
	1. To be able to impart basic know	ledge on life at molecular	level					
	2. To be able to find the molecular	reasons of physiological	disorders					
	3. To be able to suggest molecular	solutions of physiological	disorders					
COLIDGE OF	TECOMES & CENEDIC SIZILLE	6						

COURSE OUTCOMES & GENERIC SKILLLS

		Bloom's	РО	CP	CA	KP	Assessment
No.	Course outcome	Taxonomy					Methods
CO1	Be able to understand fundamental concepts on molecular cell biology, biochemistry, and genetic engineering	C1-C2	1	1		1, 3	T, F
CO2	Be able to apply the principles of	C3	3	3		5	T, Mid
	molecular methods in a design to						Term, F

								(Cour	se ()ffer	red l	by B	MEL)epar	tment
	sense,	study or c	ontrol a biological													
	systen	1.														
CO3	Be a	ble to a	nalyze a design				4	1				3			ASC	i, Pr
	involv	ing a quai	ntitative molecular	C4												
	applic	ation used	in a research,													
	1		ealthcare setting.													
	1		•	ex Activit	ties, KP-Knowledge Profile, T-Test; PR-Project;								ect; Q-			
	1		gnment; Pr-Presenta								,			,	3	, .
COURSE C																
			roduction to molecu	lar biology	, mo	oleci	ular	perc	epti	on o	f liv	ing	beir	igs, a	pplica	ation ir
	1	edical Engir		0.				1	1			0		<i>O</i> ,	1 1	
		_	f DNA : Components	s of nuclei	c ac	id ba	ased	on	diffe	eren	t str	uctu	re. S	Signif	icanc	e of 5
	to 3',		21,110 compension					011		-1-11			, .			
		coiling of I	NA													
	1 -	_	sation: from Nucleo	otides to C	hror	natii	า									
		_	f RNA and Gene to					of dif	fere	nt st	ruct	ures	s of I	RNA	The (Centra!
		-	on of different prote			npu	OII C	/I GII	1010	110 50	ii uot	uici	, 011	,	THE	Cilita
	-	-	: Replication proces			r and	d ter	min	atio	1						
	1	-	recombination: DN	-	_	-					omo					
		_	NA technology and	_								-				
			ing gene expression				-		-				nd 1	oooli	zotior	
	1	-		_	_			_		_						
	1		Mechanism of trans	cription, t	rans	cripi	поп	Tacı	ors,	ıraı	nscr	ірис	onai	coac	uvaic	ors and
	corepr		:		. 4 1	- 64			.1.1.	_1						
			genetic markers, epi	_				-					,			
	1		iation of translation,	-					-							
		-	s and Gene Seque	encing: D	NA	турі	ng a	ana	Eai	ting,	, Ge	enon	nics	and	Prote	omics
CIZIL I NA A			ne sequencing													
SKILL MAI		CO-PO M						200	CD		OT I	TOO) (T	IG (D	0)	
	No.		Course outcome			_								ES (P		
					1	2	3	4	5	6	7	8	9	10	11	12
	CO1		to understand fun		3											
		concepts	on molecular cell	biology,												
		biochemi	stry, and genetic en	gineering												
	CO2	Be able	to apply the prine	ciples of			2									
		molecula	methods in a d	lesign to												
		sense, st	udy or control a b	piological												
		system.														
	CO3	Be able to	o analyze a design i	involving				3								
			ative molecular ap	•												
		-	a research, biomed	-												
		healthcar														
	(Num		od used for mapping	which in	dica	tes 3	as	high	1, 2	as n	nedi	um	and	1 as	low 1	evel of
	match			, III		•		8	, -						•	
Justification		-	g													
Mapping		sponding	<u>-</u>			Jus	stifi	catio	ns							
11 8	Level															
	match															
	much	5														

to describe molecular functions of cells in human body. CO2-PO3 2 Knowledge of contemporary issues regarding the molecular mechanisms of diseases or knowledge of molecular solutions of these diseases are required. CO3-PO2 2 Knowledge of analyzing biological data, knowledge of identifying problems are instrumental to ensure better health. TEACHING LEARNIN STRATEGY Teaching and Learning Activities Engagement (hours) Face-to-Face Learning Lecture Practical/Tutorial/Studio - 42 Practical/Tutorial/Studio - 5 Self-Directed Learning Non-Face-to-Face Learning Revision of the previous lecture at home 21 Preparation for the final examination 21 Formal Assessment Continuous assessment 2 Final Examination 3 Total 131 TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Method Problem based method Course introduction Lecture 1 Introduction to molecular mechanisms of diseases or knowledge of identifying problems are instrumentally instrumental bases. Engagement (hours) 42 Engagement (hours) 42 42 42 42 42 42 43 44 45 45 46 47 47 48 49 49 40 40 40 40 40 40 40 40			771 1 1 1 01 1 11 11 11	11: :	. 1 . 1 1 1			
Or knowledge of molecular solutions of these diseases are required. CO3-PO2 2		3	The knowledge of basic mathematics, science and bioengineering has to be applied to describe molecular functions of cells in human body.					
CO3-PO2 2 Knowledge of analyzing biological data, knowledge of identifying problems are instrumental to ensure better health. TEACHING LEARNIN STRATEGY	CO2-PO3	2		-				
TEACHING LEARNIN STRATECY Teaching and Learning Activities Face-to-Face Learning Lecture Practical/Tutorial/Studio Student-Centered Learning Non-Face-to Face Learning Revision of the previous lecture at home Preparation for the final examination Preparation fo	CO3-PO2	2	1		•			
Teaching and Learning Activities	003102			knowledge of ide	nurying problems are			
Face-to-Face Learning Lecture	TEACHING	G LEARNIN STRA	TEGY					
Lecture Practical/Tutorial/Studio Student-Centered Learning - Self-Directed Learning	Teaching and	d Learning Activitie	s	Engagement (hou	ırs)			
Practical/Tutorial/Studio Student-Centered Learning Self-Directed Learning Non-Face-to Face Learning Revision of the previous lecture at home Preparation for the final examination Promal Assessment Continuous assessment Prinal Examination Promal Assessment Preparation for the final examination Promal Assessment Promal Assessment Preparation for the final examination Promal Assessment Preparation for the final exa	Face-to-Face	e Learning						
Student-Centered Learning Non-Face-to Face Learning Revision of the previous lecture at home Preparation for the final examination 21 Formal Assessment Continuous assessment Final Examination TOTAL TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Gourse introduction Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering 2 The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5° to 3° Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome Lecture 10 Description of different structures and identification Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification Lecture 12 Description of different protein structures and identification Lecture 12 Description of different protein structures and identification Lecture 13 Principles of replication process			42					
Self-Directed Learning Non-Face-to Face Learning Revision of the previous lecture at home 21 21 21 21 21 21 21 2					-			
Non-Face-to Face Learning Revision of the previous lecture at home Preparation for the final examination Preparation for the final examination Preparation for the final examination Promal Assessment Continuous assessment Final Examination Promal Examination Pr			ung		- 			
Revision of the previous lecture at home Preparation for the final examination 21 Formal Assessment Continuous assessment 2 3 3 3 3 3 3 3 3 3		•			40			
Preparation for the final examination 21 Formal Assessment Continuous assessment Final Examination 2 Total 3 Total 131 TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Problem based method Course introduction Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 9 RNA based genome Lecture 9 RNA based genome The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures and identification The Central dogma Lecture 12 Description of different protein structures and identification DNA replication Lecture 13 Principles of replication process			_					
Formal Assessment Continuous assessment Continuous assessment Final Examination Total Total TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Bit Course introduction Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 9 RNA based genome Lecture 9 RNA based genome The Versatility of RNA and Gene to Protein Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification DNA replication Lecture 12 Description of process		_						
Continuous assessment Final Examination Total TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Assessment Course introduction Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process			- Chammaton		21			
Final Examination 3 Total 131 TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Assessment Course introduction Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome Lecture 9 RNA based genome Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process					2			
TEACHING METHODOLOGY Lecture and Discussion, Co-operative and collaborative method, Problem based method COURSE SCHEDULE Week Content Assessment Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Fina	al Examination						
Course Schedule	Total		131					
Lecture and Discussion, Co-operative and collaborative method, Problem based method								
Lecture and Discussion, Co-operative and collaborative method, Problem based method	TEACHING	G METHODOLOG	GY					
Course introduction								
Lecture 1 Introduction to molecular biology Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering 2 The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA 3 Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process		CHEDULE	Contont					
Lecture 2 Molecular perception of living beings Lecture 3 Application in Biomedical Engineering 2 The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA 3 Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week							
Lecture 3 Application in Biomedical Engineering 2 The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA 3 Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1	Course introduc	tion					
The Structure of DNA Lecture 4 Components of nucleic acid based on different structure Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1	Course introduction to m	tion olecular biology					
Lecture 5 Significance of 5' to 3' Lecture 6 Supercoiling of DNA 3 Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2	Course introduction to m Molecular percep	nolecular biology otion of living beings					
Lecture 6 Supercoiling of DNA 3 Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3	Course introduction to m Molecular percep Application in Bi	tion colecular biology ction of living beings comedical Engineering					
3 Genomic Organization: from Nucleotides to Chromatin Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3	Course introduction to m Molecular percep Application in Bi The Structure o	tion colecular biology ction of living beings omedical Engineering f DNA					
Lecture 7 Eukaryotic genome Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4	Course introduction to m Molecular percept Application in Bit The Structure of Components of m	tion colecular biology stion of living beings omedical Engineering f DNA ucleic acid based on different structure		Assessment			
Lecture 8 Bacterial genome Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5	Course introduction to m Introduction to m Molecular percep Application in Bi The Structure o Components of m Significance of 5	tion colecular biology ction of living beings comedical Engineering f DNA ucleic acid based on different structure ' to 3'		Assessment			
Lecture 9 RNA based genome 4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6	Course introduction to make the Molecular percept Application in Bit The Structure of Components of make the Significance of 5 Supercoiling of I	tion colecular biology ction of living beings omedical Engineering f DNA ucleic acid based on different structure ' to 3' DNA		Assessment			
4 The Versatility of RNA and Gene to Protein Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3	Course introduction to m Molecular percept Application in Bit The Structure of Components of m Significance of 5 Supercoiling of E Genomic Organ Eukaryotic genore	tion colecular biology cition of living beings comedical Engineering f DNA cucleic acid based on different structure ' to 3' DNA cization: from Nucleotides to Chromatin me		Assessment			
Lecture 10 Description of different structures of RNA Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8	Course introduction to modecular percept Application in Bit The Structure of Components of modes Significance of 5 Supercoiling of Education Genomic Organ Eukaryotic genomes Bacterial genomes	tion colecular biology ction of living beings comedical Engineering f DNA cucleic acid based on different structure to 3' CNA cization: from Nucleotides to Chromatin me		Assessment			
Lecture 11 The Central dogma Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8	Course introduction to m Molecular percept Application in Bit The Structure of Components of m Significance of 5 Supercoiling of E Genomic Organ Eukaryotic genome Bacterial genome RNA based geno	tion colecular biology stion of living beings omedical Engineering f DNA ucleic acid based on different structure ' to 3' DNA ization: from Nucleotides to Chromatin me comme		Assessment			
Lecture 12 Description of different protein structures and identification 5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8 Lecture 9 4	Course introduction to m Molecular percept Application in Bit The Structure of Components of m Significance of 5 Supercoiling of E Genomic Organ Eukaryotic genome Bacterial genome RNA based genome The Versatility of	tion colecular biology cition of living beings comedical Engineering f DNA cucleic acid based on different structure ' to 3' DNA cization: from Nucleotides to Chromatin me come control of RNA and Gene to Protein		Assessment			
5 DNA replication Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8 Lecture 9 4 Lecture 10	Course introduction to modecular percept Application in Bit The Structure of Components of modes Significance of 5 Supercoiling of Eukaryotic genome Bacterial genome RNA based genome The Versatility of Description of di	tion tolecular biology totion of living beings omedical Engineering f DNA tucleic acid based on different structure to 3' DNA tization: from Nucleotides to Chromatin the		Assessment			
Lecture 13 Principles of replication process	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8 Lecture 9 4 Lecture 10 Lecture 11	Course introduction to m Molecular percept Application in Bit The Structure of Components of m Significance of 5 Supercoiling of It Genomic Organ Eukaryotic genome Bacterial genome RNA based genome The Versatility of Description of different and the Central dograms.	tion tolecular biology totion of living beings omedical Engineering f DNA ucleic acid based on different structure ' to 3' DNA ization: from Nucleotides to Chromatin me of RNA and Gene to Protein fferent structures of RNA ma		Assessment			
	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8 Lecture 9 4 Lecture 10 Lecture 11 Lecture 12	Course introduction to me Molecular percept Application in Bit The Structure of Components of me Significance of 5 Supercoiling of Eukaryotic genome Bacterial genome RNA based genome The Versatility of Description of different and the Central dogressiption of different me Molecular interest in the Central dogressiption of different me Molecular interest into the Central dogressiption of different me Molecular interest into the Central dogressiption of different me Molecular interest into the Central dogressiption of different me Molecular interest into the Central dogressiption of different me Molecular perceptage in the Central dogressiption of different me Molecular perceptage in the Central dogressiption of different me Molecular perceptage in the Molecular perceptage in t	tion tolecular biology totion of living beings omedical Engineering f DNA tucleic acid based on different structure to 3' DNA tization: from Nucleotides to Chromatin me tof RNA and Gene to Protein fferent structures of RNA ma fferent protein structures and identification		Assessment			
Lecture 14 Replication licensing: DINA only replicates once per cell cycle Duplex	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8 Lecture 9 4 Lecture 10 Lecture 11 Lecture 12 5	Course introduction to me Molecular percept Application in Bit The Structure of Components of me Significance of 5 Supercoiling of Eukaryotic genome Bacterial genome RNA based genome The Versatility of Description of differential dogrepose Description descript	tion tolecular biology totion of living beings omedical Engineering f DNA tucleic acid based on different structure to 3' DNA tization: from Nucleotides to Chromatin me tof RNA and Gene to Protein fferent structures of RNA ma fferent protein structures and identification		Assessment			
unwinding at replication forks	Week 1 Lecture 1 Lecture 2 Lecture 3 2 Lecture 4 Lecture 5 Lecture 6 3 Lecture 7 Lecture 8 Lecture 9 4 Lecture 10 Lecture 11 Lecture 12 5 Lecture 13	Course introduction to me Molecular percept Application in Bit The Structure of Components of me Significance of 5 Supercoiling of Eukaryotic genome Bacterial genome RNA based genome The Versatility of Description of differential dogressiption deliberation deliberat	tion tolecular biology bition of living beings omedical Engineering f DNA ucleic acid based on different structure ' to 3' DNA ization: from Nucleotides to Chromatin me of RNA and Gene to Protein fferent structures of RNA ma fferent protein structures and identification ication process		Assessment			

Lecture 15	Proofreading and termination				- Sy BIIE Department
6	DNA repair and recombina	tion			
Lecture 16	Types of mutations and their	phenotyp	ic consequences		CT-2
Lecture 17	General classes of DNA dama		•		
Lecture 18	Repair of single base changes	s and stru	ectural distortions by removal of	DNA	
	damage		•		
	Double-strand break repair by	removal	of DNA damage		
7	Recombinant DNA technological				
Lecture 19	Cutting and joining DNA				
Lecture 20	Molecular cloning				
Lecture 21	Restriction fragment length p	olymorph	nism (RFLP)		
	DNA sequencing	, 1			
	1 0				
8	Tools for analyzing gene ex	pression			
Lecture 22	Reporter genes				
Lecture 23	In vitro mutagenesis				
Lecture 24	Analysis at the level of gene t	ranscript	ion: RNA expression and localization	ation	
	_	-	tein expression and localization		
9	Transcription		-		
Lecture 25	Mechanism of transcription				
Lecture 26	Transcription factors				
Lecture 27	Transcriptional coactivators a				
10	Epigenetics and monoallelic				
Lecture 28	Epigenetic markers		Midterm		
Lecture 29	Genomic imprinting				
Lecture 30	Epigenetic control of transpos				
11	RNA processing and post-tr				
Lecture 31	Group I and group II self-spli	cing intro	ons		
Lecture 32	Alternative splicing				
Lecture 33	RNA editing				
12	Translation				
Lecture 34	Initiation of translation				
Lecture 35	Elongation				
Lecture 36	Termination and post-translat	ional con	trol		
13	Genetically modified organi	isms: use	in basic and applied research		
Lecture 37	Transgenic mice		**		
Lecture 38	Gene-targeted mouse models				
Lecture 39	Applications of transgenic an	imal tech	nology		CT – 3, FINAL
14	Genome analysis and Gene		· ·		
Lecture 40	DNA typing and Editing	-			
Lecture 41	Genomics and Proteomics				
Lecture 42	Techniques in Gene sequenci	ng			
	NT STRATEGY				
				D.	
			CO	Blo	ooms Taxonomy
(Components Gra	ding			

Continuous	Class Test/	20%	CO1, CO2	C1, C2, C3
assessment (40%)	Assignment 1-3			
	Class participation	5%	CO1	C1, C2
	Midterm	15%	CO3	C4
Final I	Exam	60%	CO1	C1, C2
			CO2	C3
			CO3	C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P= Psychomotor Domain, A= Affective Domain)

TEXT BOOKS

- 1. Fundamental Molecular Biology by Lizabeth A. Allison
- 2. Lehninger Principles of Biochemistry- 4th Edition, by Albert L. Lehninger, David L. Nelson, and Michael M. Cox.

REFERENCE BOOKS

- 1. Molecular Cell Biology by Lodish, Berk, Matsudaira, Kaiser Krieger, Scott, Zipursky, Darnell.
- 2. Introduction to Molecular Biology and Genetic Engineering by Oliver Brandenberg, Zephaniah Dhlamini Alessandra Sensi, Kakoli Ghosh, Andrea Sonnino

6.1.29 BME 404 Molecular Biology for Engineers Sessional

COURSE INFO	RMATION		
Course Code	: BME 404	Lecture Contact Hours	: 3.00
Course Title	: Molecular Biology for Engineers Sessional	Credit Hours	: 1.50

PRE-REQUISITE

Course Code: BME 406

Course Title: Molecular Biology for Engineers

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers routinely used molecular biology techniques used in diagnostics and laboratory. Topics cover both DNA based assays such as PCR, electrophoresis and protein-based assays such as ELISA and SDS-PAGE In-vitro cell culture techniques are also covered

OBJECTIVE

This course aims to introduce the students to basic molecular biology techniques, their applications and methodologies.

COUI	RSE OUTCOMES & GENERIC SKILLS							
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods	
CO1	Be able to extract , quantify and analyze nucleic acids (DNA/RNA) using amplification techniques	C3, C4	4, 5	-	1	1	T, Q, R	
CO2	Be able to conduct protein-based assays (ELISA, flow cytometer)	C3, C4	4, 5	-	1	1	T, Q, R	
CO3	Be able to apply cell culture techniques to quantify and analyze cell growth	C3, C4	2, 5	_	1	1	T, Q, R	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Extraction of DNA and RNA using commercially available DNA/RNA extraction kits. Identification of gene of interest using real-time PCR technique. Gene length quantification using gel electrophoresis. Protein extraction using kits and identification using SDS-PAGE techniques. Antigen/antibody detection using flow cytometry techniques. In-vitro cell culture in both 2D and 3D substrates with cell counting and differentiation using flow cytometry.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to extract, quantify and analyze												
CO1	nucleic acids (DNA/RNA) using				3	3							
	amplification techniques												
CO2	Be able to conduct protein-based assays				2	2							
CO2	(ELISA, flow cytometer))	3							
CO3	Be able to apply cell culture techniques to		2			2							
003	quantify and analyze cell growth		3			3							
(A) T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	1 ' 1	_		1.		1 1	1	1 .	1 0	4 1 '	`

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

		fered by BME Department
TEACHING	G LEARNING STRATEGY	
Teaching and	l Learning Activities	Engagement (hours)
Face-to-Face	Learning	
Lec	ture	7
	ctical / Tutorial / Studio	35
	dent-Centered Learning	-
Self-Directed	9	
	n-face-to-face learning	-
	vision of the previous and (or) subsequent lecture at home	15
	paration for final examination	10
Formal Asses		
	ntinuous Assessment	1
	Test	1
Qui		0.75
Viv	a	0.25
Total		70
TEACHING	G METHODOLOGY	
Lecture and	discussion, Co-operative and collaborative method, Problem based method	
COURSE S	CHEDULE	
Week	Lecture Topics	Assessment
1	Introduction to general laboratory techniques and laboratory instruments	
	routinely used in molecular biology labs	
2	Isolation of PBMCs from whole blood followed by cell staining	
3	Extraction of genomic DNA from PBMCs using different extraction	
	techniques	Report, Lab Test, Quiz,
4	Extraction of total RNA from PBMCs using a commercial RNA	Viva
	isolation kit	
5	Amplification and analysis of the extracted DNA sample using PCR	
6	Amplification and analysis of the extracted DNA sample using RT-PCR	
7	Identification of PCR products using gel electrophoresis	
	Midterm Break	
8	Mid Lab Test	
9	Isolation of PBMCs from whole blood followed by total WBC culture	
10	Qualitative assessment of total WBC culture followed by cell staining	Report, Lab Test, Quiz,
	for flow cytometry analysis	Viva
11	Quantification of T/B cell surface markers using flow cytometer	
12	Receptor-ligand binding assay using ELISA or a rapid diagnostic kit	
13	Lab Test	
14	Quiz and Viva	
ASSESSME	NT STRATEGY	

Comp	oonents	Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3	C4, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C3
(0078)	Viva	10%	CO1, CO2, CO3	C4, C3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Molecular Biomethods Handbook, 2nd Edition, John M. Walker, Humana Press
- 2. Fundamental Molecular Biology, Lizabeth A. Allison, Blackwell Publishing

REFERENCE SITE

-

6.1.30 BME 405 Healthcare Technology Management

COURSE INFO	COURSE INFORMATION											
Course Code Course Title	: BME 405 : Healthcare Technology Management (HTM)	Lecture Contact Hours Credit Hours	: 3.00 : 3.00									

PRE-REQUISITE

Course Code: BME 401

Course Title: Diagnostic and therapeutic equipment

Course Code: BME 300 Course Title: Industrial Training

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides students with a basic understanding of the principles of healthcare technology planning and management - assessment, budgeting, acquisition, deployment, education/training, patient safety, maintenance, and replacement/disposal, hospital planning and management. Planning and management will focus on medical devices, clinical information systems, and converged technologies.

OBJECTIVE

- 1. To understand the basic guiding principles of healthcare technology planning and management
- 2. To provide a methodology for improving the quality of medical devices, clinical information systems and converged technology through effective planning and management
- 3. To help students better communicate with technical staff, clinicians, regulators, administrators, and technology vendors.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's	РО	СР	CA	KP	Assessment
		Taxonomy	1				Methods

CO1	Be able to understand the management, administration and regulation of healthcare technology.	C2	11	-	-	1	T, F
CO2	Be able to analyze the clinical effectiveness, efficiency and safety of patient and surrounding individuals.	C4	2, 8	-	-	6	T, F
СОЗ	Be able to evaluate and manage the information regarding identification of biomedical and hospital technology planning, procurement and operation requirements.	C5	4, 11	-	-	7	MID, F
CO4	Be able to manage environmental considerations and sustainable engineering solutions to healthcare.	C2	7	-	-	7	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Healthcare Technology Overview: Introduction to healthcare technology management (HTM), Healthcare and introduction to digital and mobile health, Leveraging technology and innovation to improve healthcare, Hospital planning and management, Classification of hospitals and hospital systems, their role, functions, role of biomedical engineering, aspects of hospital services, Introduction to Norms and standards (e.g. HBN / FGI / AHA / ICRP / JCI / FDA / CE/ ISO), methods to monitor the standards, Hospital planning, location, orientation, budgeting, communication within the hospital and outside the hospital.

Safety measure in Healthcare Facility: Infection Control, Central Medical Gas System design, HVAC system, Concept of Ambulance services, Laundry services, Civil Assets, CSSD, Electrical factors in hospital design: voltage stabilizers, uninterrupted power supply for intensive care UNITS and computerized monitoring UNITS, safety precautions, interference of systems, protection, grounding of ECG, EEG, EMG and therapeutic equipment.

Equipment service and maintenance: Biomedical equipment services, their purchase, servicing and maintenance, condemned equipment disposal, training of men for medical equipment's, preventive and periodical maintenance procedures, life cycle of medical equipment.

Electronic Medical Record & Hospital Management Strategy for Healthcare: Computer based information management in hospitals, application, administration /discharge records of patients – patients billing, maintenance of patients' record, their history, and maintenance of inventory of medicines and drugs purchase, Hospital information system and picture archiving system (PACS), Telemedicine-Remote presence monitoring, companion diagnostics and outlook for personalized medicine.

Support services in Healthcare: Disaster management, Fire Fighting system, Elements of Safety, Orientation to Laboratory Safety, Radiation hazards, Radiation detection, Safety measures, Standards, Flammables and Explosives, Material Safety, Waste management.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
	Be able to understand the management,												
CO1	administration and regulation of											3	
	healthcare technology.												
CO2	Be able to analyze the clinical		2						2				
CO2	effectiveness, efficiency and safety of												

	patient and surrounding individuals.								
CO3	Be able to evaluate and manage the information regarding identification of biomedical and hospital technology planning, procurement and operation requirements.					2		3	
CO4	Be able to manage environmental considerations and sustainable engineering solutions to healthcare.				3				

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Introduction to Healthcare Technology Management	
	(HTM)	
Lecture 1	HTM overview	
Lecture 2	Roles and functions of HTM in healthcare facilities	
Lecture 3	Strategy and management thinking	CT – 1, Final
2	Healthcare Quality Concepts	
Lecture 4	Introduction to quality concepts	
Lecture 5	Aspects of quality concepts	
Lecture 6	Dimensions of quality concepts	
3	Healthcare Regulations and Standards	
Lecture 7	Overview of various norms and standards	
Lecture 8	Uses of regulations and standards in healthcare facilities	
Lecture 9	Methods to monitor standards	
4	Inventory and Risk Management	
Lecture 10	Overview of various safety measures in healthcare	
Lecture 11	Overview of various safety measures in healthcare	

		ea by DME Department
Lecture 12	Electrical factors in hospital design	
5	Overview of Hospitals	
Lecture 13	Introduction to hospital	
Lecture 14	Classification of hospitals and hospital systems	
Lecture 15	Roles and function of hospital departments	
6	Intensive Care Unit/ OT Module	Midterm, Final
Lecture 16	Overview of common apparatus in ICU and OT	
Lecture 17	Levels and types of care units	
Lecture 18	Medical OT setup (Budget and Planning)	
7	Hospital planning, Financial Management and Material	
	Management	
Lecture 19	Hospital planning: Location, Orientation, and Budgeting	
Lecture 20	Hospital planning: Location, Orientation, and Budgeting (Continue)	
Lecture 21	Audit, Financial Management and Material Management	
2300010 21	Midterm Break	
8	Biomedical Equipment Management – Part I	
Lecture 22	Biomedical equipment purchase	
Lecture 23	Planned replacement projects (planning, tender, procurement,	
Lecture 25	commissioning and discussion)	
Lecture 24	Managing equipment trials and servicing maintenance	
9	Biomedical Equipment Management – Part II	
Lecture 25	Healthcare technology assessment, advert event investigation	CT – 2, Final
Lecture 25	and medical device safety alert	,
Lecture 26	Condemned equipment disposal, Training services	
Lecture 27	Preventive and periodic maintenance	
10	Life Cycle Management of Medical Equipment	
Lecture 28	Managing medical equipment over its life cycle (life cycle medical equipment cost, maintenance cost, replacement planning)	
Lecture 29	Approaches to financing the life cycle of medical equipment (Capital-funded support, revenue funded support, renting, leasing equipment etc.)	
Lecture 30	Extracting optimal benefit from medical equipment over its life cycle (asset management: buy the right equipment; operation and user support; maintenance)	
11	Electronic Medical Record & Hospital Management Strategy	
Lecture 31	Computer controlled information management in hospitals	
Lecture 32	Maintenance of inventory medicine, patient record system	
Lecture 33	Patient billing, maintenance of patients' records and history	
12	Hospital Information System and Picture Archiving System (PACS)	
Lecture 34	Overview of HIS, Laboratory Information System (LIS) and	CT – 3, FINAL
Lecture 35	Electronic Medical Health Record (EMR) Significance of PACS, Overview of DICOM, PACS	
	Architecture for Imaging Modalities	

PACS Architecture for Care Unit Equipment and Diagnosis	
Equipment, Integration of PACS with HIS and EMR	
Support Services, Health Safety and Waste Management	
Disaster management, firefighting system overview, basic	
elements of safety regulations, Infectious Control	
Safety regulation, laboratory safety, material safety, HVAC	
system, CSSD unit	
Radiation hazards and detection system, safety measures,	
flammables and explosives; Waste management	FINAL
Digital and Mobile Health (Telemedicine)	FINAL
Introduction to digital and mobile healthcare system	
Leveraging technology and innovation to improve healthcare	
iRobot and the importance of telemedicine in healthcare improvement, personalize medicine technology	
	Equipment, Integration of PACS with HIS and EMR Support Services, Health Safety and Waste Management Disaster management, firefighting system overview, basic elements of safety regulations, Infectious Control Safety regulation, laboratory safety, material safety, HVAC system, CSSD unit Radiation hazards and detection system, safety measures, flammables and explosives; Waste management Digital and Mobile Health (Telemedicine) Introduction to digital and mobile healthcare system Leveraging technology and innovation to improve healthcare iRobot and the importance of telemedicine in healthcare

ASSESSMENT STRATEGY

Come	agnants	Grading	СО	Blooms Taxonomy
Com	onents	Grading		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2, CO4	C2, C4, C2
(40%)	Class Participation	5%	-	-
	Midterm	15%	CO3	C5
			CO 1	C2
Einal	Exam	60%	CO 2	C4
rinai	Exam	00%	CO 3	C5
			CO 4	C2
Total	Marks	100%	,	

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Healthcare Technology Management A Systematic approach by Blackett, Paul, McCarthy, Justin
- 2. Healthcare Technology Management Systems: Towards a New Organizational Model for Health Services by Rossana Rivas and Luis Vilcahuaman

REFERENCE SITE

--

6.1.31 BME 407 Rehabilitation Engineering

COURSE INFO	ORMATION		
			: 3.00
Course Code	: BME 407	Lecture Contact Hours	: 3.00
Course Title	: Rehabilitation Engineering	Credit Hours	

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the major topics/subtopics that include impairments, disabilities and handicaps (identification and assessment); characterizing engineering concepts in sensory and motor rehabilitation; engineering concept in communication disorders; rehabilitation for locomotion, visual, speech & hearing; artificial limb and hands, prosthetic heart valves; externally powered and controlled orthotics and prosthetics; myoelectric hand and arm prostheses; Marcus intelligent hand prostheses, gait study and spinal rehabilitation.

OBJECTIVE

The goal of this course is to present rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. The focus of this course lies in the restoration and treatment of the human sensory and vegetative systems.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify human disorders (impairments, disabilities and handicaps)	C1	2	1	-	1,3	T, F
CO2	Be able to investigate and evaluate human disorders (impairments, disabilities and handicaps)	C5	4	1	-	1,3	T, F
СОЗ	Be able to select appropriate method(s) of rehabilitation	C4	5	1	-	1	MID, F
CO4	Be able to develop suitable assistive technology in providing rehabilitation supports to the disable.	С6	3,7	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

	- · · · · · · · · · · · · · · · · · · ·				
C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Introduction to Rehabilitation Engineering, Types of physical impairments, Principles of Rehabilitation, Measurement and analysis of human movement, clinical practice of rehabilitation engineering, Motor, Sensor and Communication disorders, Characterizing engineering concepts in sensory and motor rehabilitation, Engineering concept in communication disorders, Rehabs for locomotion, visual, speech & hearing, Spinal rehabilitation, Rehabilitation Robotics, Major Limb Prosthetic Devices, Orthotic Devices, Types of orthotics and prosthetics, Intelligent prosthetic Knee, Prosthetic Hand, Restoration of Hand function, Restoration of standing and walking, Myo-electric Hand, Marcus intelligent hand prostheses.

SKILL MAPPING

No. Course Learning Outcome					PR	OGI	RAM	JOI	JTCO	MES	(PO)		
INO.	1 2 3		4	5	6	7	8	9	10	11	12		
CO1	Be able to identify human disorders (impairments, disabilities and handicaps)		3										
CO2	Be able to evaluate human disorders (impairments, disabilities and handicaps)				3								
СОЗ	Be able to select appropriate method(s) of rehabilitation					3							
CO4	Be able to develop suitable assistive technology in providing rehabilitation supports to the disables.			3				2					

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

TEMENTAL OF TRATEGI	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Introduction to Rehabilitation Engineering	
Lecture 1	Basics of Impairment, Disability & Handicap, Introduction to	
	Rehabilitation Engineering	CT – 1, Final
Lecture 2	History, Goals and Types of Rehabilitation Engineering	
Lecture 3	Assistive Technology and Overview of Development on	
	Rehabilitation Engineering	
2	Analysis of Human Motion	
Lecture 4	Rigid Body Motion	

Lecture 5	Forms of Motion, Anatomical Reference Position, Reference	ea by BME Department
Lecture 5	Planes, Reference Axes	
Lecture 6	Joint Movements	
3	Sensory & Motor Rehabilitation	
Lecture 7	Basics of Human Senses	
Lecture 8	Sensory Rehabilitation, Neurological Rehabilitation	
Lecture 9	Principles Governing Neuroplasticity, Motor Rehabilitation	
4	Rehabilitation for Communication Disorders – Part I	
Lecture 10	Communication Process	
Lecture 11	Fundamentals of Communication Disorders	
Lecture 12	Autism, Causes, Characteristics, Types and Clinical Practices	
Lecture 12	of Speech Impairments	
5	Rehabilitation for Communication Disorders – Part II	
Lecture 13	Introduction to Language Impairments	
Lecture 14	Causes and Types of Language Impairments, Determining the	
Lecture 14	Presence of Communication Disorders	Midterm, Final
Lecture 15		1/11/1/21 111/
	Augmentative and Alternative Communication (AAC)	
6	Rehabilitation for Locomotion Disorders	
Lecture 16	Introduction to Locomotion	
Lecture 17	Media for Locomotion – Supports & Problems; Exoskeleton,	
T 10	Endoskeleton	
Lecture 18	Consequences of impaired musculoskeletal system on support	
	& locomotion and their solutions	
7	Rehabilitation for Visual Disorders - Part I	
Lecture 19	Introduction to visual disorder	
Lecture 20	Causes of visual impairments	
Lecture 21	Goals and Assessment of visual rehabilitation	
	Midterm Break	
	Rehabilitation for Visual Disorders - Part II	
	Rehabilitation for Visual Disorders - Part II Strategies for low vision management	
Lecture 22		
Lecture 22 Lecture 23	Strategies for low vision management	
Lecture 22 Lecture 23 Lecture 24	Strategies for low vision management Optical devices for visual rehabilitation	
Lecture 22 Lecture 23 Lecture 24	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation	
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28 Lecture 29	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II Non-Implantable Hearing Devices	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28 Lecture 29 Lecture 30	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II Non-Implantable Hearing Devices Implantable Hearing Devices Implantable Hearing Devices	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28 Lecture 29 Lecture 30 11	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II Non-Implantable Hearing Devices Implantable Hearing Devices	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28 Lecture 29 Lecture 30 11 Lecture 31	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II Non-Implantable Hearing Devices Implantable Hearing Devices Implantable Hearing Devices Artificial Limb – Part I Overview of artificial limb	CT – 2, Final
Lecture 22 Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28 Lecture 29 Lecture 30 11 Lecture 31 Lecture 32	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II Non-Implantable Hearing Devices Implantable Hearing Devices Implantable Hearing Devices Artificial Limb – Part I Overview of artificial limb Characteristics and consideration of an Ideal Prosthesis	CT – 2, Final
Lecture 23 Lecture 24 9 Lecture 25 Lecture 26 Lecture 27 10 Lecture 28	Strategies for low vision management Optical devices for visual rehabilitation Non-optical Devices For visual rehabilitation Rehabilitation for Hearing Disorders – Part I Basics of Hearing Process Degree and Type of Hearing Impairments Assessment and Risk Factors of Hearing Impairments Rehabilitation for Hearing Disorders – Part II Non-Implantable Hearing Devices Implantable Hearing Devices Implantable Hearing Devices Artificial Limb – Part I Overview of artificial limb	CT – 2, Final

Lecture 35	Prosthetic Suspension	
Lecture 36	Amputation & Prosthesis Fitting Procedure	CT – 3, FINAL
13	Rehabilitation for Heart Valve Disorder	
Lecture 37	Symptoms and causes of Heart Valve disorder	
Lecture 38	Types of heart valves	
Lecture 39	Technical aspects of Heart valves	FINAL
14	Rehabilitation for Spinal Disorder	FINAL
Lecture 40	Spinal Function and Injury	
Lecture 41	Risk Factors and Classification of Spinal Injury	
Lecture 42	Goal and therapies for Spinal Rehabilitation	

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Comp	onents	Grading		
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO4	C1, C5, C6
Assessment (40%)	Class Participation	5%	CO3	C4
	Midterm	15%	CO3	C4
			CO 1	C1
Eina!	Exam	60%	CO 2	C5
Fillal	Exam	00%	CO 3	C4
			CO 4	C6
Total Marks 100		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Robbinson C.J., Rehabilitation Engineering. CRC press 1995
- 2. Gerald E. Miller, Artificial Organs, Morgan & Claypool Publishers, 2006

REFERENCE BOOKS

- 1. Bronzino. Joseph, Handbook of biomedical engineering. CRC; 2 Sub editions, 1999
- 2. BallabioE.etal, Rehabilitation Engineering. IOS press 1993.

REFERENCE SITE

 $\underline{https://classroom.google.com/u/0/c/NDQzMzQ1NDQzNjla}$

6.1.32 BME 409 Tissue Engineering

COURSE I	COURSE INFORMATION											
Course Code		: BME 409	Lecture Contact Hours	: 3.00								
Course Title : Tissue Engineering		: Tissue Engineering	Credit Hours	: 3.00								
PRE-REQU	UISITE											
Course Code : BME 201 Course Code : BME 405												
Course Titile : Human Physiology Course Titile : Molecular Biology for Engineers												

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Although lives of thousands of people are saved by reconstructive surgery, many people are still waiting for organ donations. In the last decade Tissue engineering has emerged as a new discipline within reconstructive surgery, with focus on in vitro fabrication of living, human spare parts. Tissue engineering encompasses several different sciences such as biology, chemistry, material science, engineering, immunology and transplantation. The course in Tissue engineering provides a general understanding of tissue growth and development as well as the tools and theoretical information necessary to design tissues and organs.

OBJECTIVES

- 1. To able to impart basic knowledge on cellular organization of life
- 2. To be able familiarize the students with the fabrication techniques used in Tissue engineering
- 3. To be able to identify problems and suggests remedy in the field of regenerative medicine

COURSE OUTCOMES & GENERIC SKILLLS

No.	Course outcome	POs	Bloom's Taxonomy	СР	CA	KP	Assessmen t Methods
CO1	Be able to understand the basic concepts of cell culture and critical components of bioreactor and tissue design	PO-1	C1-C2	1		1	T, F
CO2	Be able to explain basic principles of host response and tissue integration	PO-2	C2	3		1	T, Mid term exam
CO3	Be able to understand and judge papers, publications and lectures pertaining to the field of TE and have broad understanding of TE research	PO-1	C1, C2, C5	1		1	ASG, Pr

(CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quize; ASG-Assignment; Pr-Presentaion; R-Report, F-Final Exam

COURSE CONTENT

Introduction

Basic principles of Tissue Engineering

Application of Tissue Engineering

Challenges and ethical issues in Tissue Engineering

Basic cells culture

Cell culture, subculture, proliferation and storage

Cell adhesion and migration

3D cell culture

Stem cell and differentiation

Adult Stem Cells

Hematopoetic Stem Cells

Embryonic Stem Cells and induced pluripotent stem cells

Extracellular matrix

Composition of extracellular matrix

Matrix metalloproteinases (MMPs) and Metalloproteinase (ADAM)

Decellularization

Vascularity, angiogenesis and Growth factors

Principle of cell signalling and types of receptors

Growth factors delivery and gene therapy

Vascularity, angiogenesis and wound healing

Scaffolds in tissue engineering

Features of scaffold

Materials for scaffold formation

Cell-Biomaterial Interactions

Tissue Engineering and host response

Transplantation immunology and grafts (organ donation), Regulating factors of Transplantation and grafts, Clinical experience.

Biofabrication and biomanufacture. In Vivo Synthesis of Tissues and Organs, in Vitro Control of Tissue Development and host response and control measurement in Bone tissue engineering, Cardiac tissue engineering, Neural tissue engineering and in Connective Tissue Engineering. Animal models, Organ-in-chip, Regulation, Commercialization and Ethics.

SKILL MAPPING (CO-PO MAPPING)

	N.		<u> </u>	Course Offered by BME De									eparın		
	No.		Course outcome	PROGRAM OUTCOMES (PO)									10		
				1	2	3	4	5	6	7	8	9	10	11	12
	CO1		o understand the basic f cell culture and critical	3											
			s of bioreactor and tissue												
		design	s of bioreactor and assue												
	CO2		explain basic principles of se and tissue integration		2										
	CO3	papers, pu	understand and judge ablications and lectures the field of TE and have restanding of TE research	2											
	`	erical method tching)	l used for mapping which i	ndic	ates	3 as	s hig	sh, 2	as 1	ned	ium	and	1 as	low le	evel
Justification	n for CO	PO mappin	g												
Mapping	Corre Level match				J	usti	ficat	tion	S						
CO1-PO1	2		The knowledge of basic rapplied to describe the fu								_		_		be
CO2-PO2	3		Knowledge of analyzing are instrumental to ensure		_					_				-	
CO3-PO1	3		Knowledge of updated re applications of modern to								ssed	in o	rder t	o ens	ure
TEACHIN	G LEA	RNIN STRA	TEGY												
Teaching ar	nd Learn	ning Activitie	s										Eng (ho	gagen urs)	nent
Face-to-Fac	e Learn	ing													
Le	cture													42	
Pra	actical/T	utorial/Studi	0											-	
Stu	ıdent-Ce	entered Learn	ing											-	
Self-Directe	ed Learn	ning		_								_		_	_
		to Face Learn	•											42	
		_	s lecture at home												
			examination											21	
Formal Ass															
		s assessment												2	
	nal Exan	nination												3	
Total														131	

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and collaborative method, Problem based method

Lecture 1 Basic Principles of Tissue Engineering Lecture 2 Application of Tissue Engineering Lecture 3 Challenges and Ethical Issues in Tissue Engineering 2 Basic cells culture Lecture 4 Cell Culture, Subculture, Proliferation and Storage Lecture 5 Cell Adhesion and Migration Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM) Lecture 12 Decellularization	
Lecture 2 Application of Tissue Engineering Lecture 3 Challenges and Ethical Issues in Tissue Engineering 2 Basic cells culture Lecture 4 Cell Culture, Subculture, Proliferation and Storage Lecture 5 Cell Adhesion and Migration Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 3 Challenges and Ethical Issues in Tissue Engineering 2 Basic cells culture Lecture 4 Cell Culture, Subculture, Proliferation and Storage Lecture 5 Cell Adhesion and Migration Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
2 Basic cells culture Lecture 4 Cell Culture, Subculture, Proliferation and Storage Lecture 5 Cell Adhesion and Migration Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 4 Cell Culture, Subculture, Proliferation and Storage Lecture 5 Cell Adhesion and Migration Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 5 Cell Adhesion and Migration Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 6 3D Cell Culture 3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
3 Stem cell and differentiation Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	CT – 1 and
Lecture 7 Adult Stem Cells Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	Midterm, Final
Lecture 8 Hematopoetic Stem Cells Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 9 Embryonic Stem Cells and Induced Pluripotent Stem Cells 4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
4 Extracellular matrix Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 10 Composition of Extracellular Matrix Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 11 Matrix Metalloproteinases (MMPs) and Metalloproteinase (ADAM)	
Lecture 12 Decellularization	
5 Vascularity, angiogenesis and Growth factors	
Lecture 13 Principle of Cell Signaling and Types of Receptors	
Lecture 14 Growth Factors Delivery and Gene Therapy	
Lecture 15 Vascularity, Angiogenesis and Wound Healing	
6 Tissue Engineering and host response	
Lecture 16 Transplantation Immunology and Grafts (Organ Donation)	Midterm, Final
Lecture 17 Regulating Factors of Transplantation and Grafts	
Lecture 18 Clinical Aspects	
7 Issues in Tissue Engineering	
Lecture 19 Animal Models	
Lecture 20 Organ-in-chip	
Lecture 21 Regulation, Commercialization and Ethics	
MIDTERM	
8 Tissue Engineering Scaffolds & Bioreactors	
Lecture 22 Features of Scaffold	
Lecture 23 Materials for Scaffold Formation	

Lecture 24	Bioreactors for Tissue Engineering	
9	Scaffold Fabrication Techniques	
Lecture 25	Fabrication Techniques – Fundamentals	
Lecture 26	Rapid Prototyping Techniques (Processes)	
Lecture 27	Rapid Prototyping Techniques (Attributes)	
10	Scaffold Design and Cell-Scaffold Interactions	
Lecture 28	Scaffold Design	CT – 2, FINAL
Lecture 29	Scaffold Degradation	
Lecture 30	Cell-Scaffold Interaction	
11	Bone Tissue Engineering	
Lecture 31	In Vivo Synthesis of Tissues and Organs	
Lecture 32	In Vitro Control of Tissue Development	
Lecture 33	Host Response and Control Measurement	
12	Cardiac Tissue Engineering	
Lecture 34	In Vivo Synthesis of Tissues and Organs	
Lecture 35	In Vitro Control of Tissue Development	
Lecture 36	Host Response and Control Measurement	
13	Neural Tissue Engineering	
Lecture 37	In Vivo Synthesis of Tissues and Organs	
Lecture 38	In Vitro Control of Tissue Development	CT – 3, FINAL
Lecture 39	Host response and control measurement	
14	Skin Tissue Engineering	
Lecture 40	In Vivo Synthesis of Tissues and Organs	
Lecture 41	In Vitro Control of Tissue Development	
Lecture 42	Host Response and Control Measurement	

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy
Comp	Components			
Continuous assessment	ssessment		CO1, CO2	C1, C2, C3
(40%)	Class participation	5%	CO2	C3
	Mid Term	15%	CO3	C1, C2, C3
			CO1	C1, C2

Final Exam	60%	CO2	C3
		CO3	C1, C2, C3
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P= Psychomotor Domain, A= Affective Domain)

TEXT BOOKS

1. Principles of Tissue Engineering, by Robert Lanza, Robert Langer and Joseph P Vcanti.

REFERENCE BOOKS

1. Introduction to Tissue Engineering: Applications and Challenges (IEEE Press Series on Biomedical Engineering) 1st Edition by Ravi Birla

6.1.33 BME 412 Biomedical Engineering Design Sessional II

COURSE INFO	RMATION		
Course Code	: BME 412	Lecture Contact Hours	: 3.00
Course Title	: Biomedical Engineering Design Sessional II	Credit Hours	: 1.50

PRE-REQUISITE

Course Code: BME 318

Course Title: Biomedical Engineering Design Sessional I

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the application of design tools to model prototypes and develop the individual project ideas and full completion of an individual project.

OBJECTIVE

The aim of this course is to enhance student's idea about project and develop their capabilities of project management.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify existing problems in biomedical research and the healthcare sector	C3	3, 5	1	-	1	T, Q, R
CO2	Be able to formulate and implement novel solutions to the identified problem	C4	2, 5	1	-	1, 2	T, Q, R, ASG
CO3	Be able to effectively communicate the problem and the results of the proposed solution through scientific writing and oral presentation	C6	3	1, 3	-	5	T, Q, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Understand C3 - Apply C4 - Analyze C5 - Evaluate C6 - Create

COURSE CONTENT

As the follow-up course to Biomedical Engineering I Design Sessional, this course introduces the students to independent research. In the first few weeks students are teamed into groups and work to define a problem in a certain biomedical area. The problem is then vetted by the instructor(s) who help the students to generate potential solutions to the problem and create a project plan. The students then translate these potential solutions from paper to prototype with a strong emphasis of characterization and validation. Apart from problem identification, problem solving, testing and validation, students undergo rigorous training in effective technical communication (both oral and written).

SKILL MAPPING

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
CO1 1 1 1 1 1 1 1 1 1	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to identify existing problems in												
CO1	biomedical research and the healthcare			2		3							
	sector												
CO2	Be able to formulate and implement		2			3							
CO2	novel solutions to the identified problem					3							
	Be able to effectively communicate the												
CO3	problem and the results of the proposed			3									
1003	solution through scientific writing and oral			3									
	presentation												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

Engagement (hours)
7
35
-
-
15
10
1
1
0.75
0.25
70

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Lecture Topics	Assessment
1	Introduction, Course overview, Evaluation process, Form group	
2	Discussion on Primarily proposed projects and project scope	
3	Discussion on Selected project idea and design consideration	
4	Budget and timeline distribution, Define research gap and project scope, design requirements	Report, Assignment, Presentation, Viva
5	Model generation, usability testing, engineering analysis	
6	Primary design and simulation	
7	Finalization of design with detailed drawing and computational	
	validation testing	
	Midterm Break	
8	Presentation on Project update	
9	Prototype fabrication review and troubleshooting	Report, Assignment,
10	Prototype verification and validation testing	Presentation, Viva
11	Draft Report Submission and Review	
12	Project Submission with complete documentation (Drawing, user	
	manual, report and design history file)	
13	Presentation	
14	Project Showcasing	

ASSESSMENT STRATEGY

Comp	oonents	Grading	СО	Blooms Taxonomy
Continuous	Report	20%	CO1, CO2, CO3	C4, C5, C3
Assessment (40%)	Class Participation	20%	CO1, CO2, CO3 C4, C5	C4, C5, C3
Final Exam	Lab Test	20%	CO1, CO2, CO3	C4, C5, C3
(60%)	Quiz	30%	CO1, CO2, CO3	C4, C5, C3
(0076)	Viva	10%	CO1, CO2, CO3	C4, C5, C3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT BOOKS

- 1. Robbinson C.J., Rehabilitation Engineering. CRC press 1995
- 2. Gerald E. Miller, Artificial Organs, Morgan & Claypool Publishers, 2006

REFERENCE BOOKS

- 1. Bronzino. Joseph, Handbook of biomedical engineering. CRC; 2 Sub editions, 1999
- 2. BallabioE.etal, Rehabilitation Engineering. IOS press 1993.

REFERENCE SITE

_

6.1.34 BME 400 Final Year Design and Research Project

COURSE INFO	RMATION		
Course Code Course Title	: BME 400 : Final Year Design and Research Project	Lecture Contact Hours Credit Hours	: 12.00 : 6.00

PRE-REQUISITE

GERM 352: Fundamentals of Research Methodology (Sessional)

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The aim of this course is to develop student's ability to design a comprehensive product/service solution of an applied biomedical engineering problem. Students will be able to apply the knowledge and skills obtained through previous courses to design a new integrated solution, validation and proper evaluation of outcomes at different stage of the project. It is also expected to enhance student's leadership ability in technical project management and be able to contribute in fourth industrial revolution.

OBJECTIVE

- 1. To formulate a research problem based on the knowledge of major subject/field of study.
- 2. Design an appropriate solution technique to address the research problem.
- **3.** To reach the ability to evaluate the performance of proposed solution.
- **4.** To compare the outcomes with the latest scientific development.
- **5.** To assess professional, ethical and social impacts of the designed solutions.
- **6.** To perform research tasks using proper project management practices.
- 7. To develop student's leadership ability through teamwork.
- **8.** To enhance student's communication skill through presentation and technical reports.
- 9. Articulation of the environmental and sustainability analysis in the designed project.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Correspo nding PO No.	Bloom's Taxonom y	КР	СР	CA	Assess ment Metho ds
CO1	Be able to identify the research gap and formulate a research problem related to biomedical engineering.	PO2	C4	3,4	1	1	IR
CO2	Be able to design an appropriate engineering product/service solution that meets the required technical standard and specifications.	PO3	C6	5	1	2	PR, PPr
СОЗ	Be proficient in investigating the performance of the designed engineering product/service prototype.	PO4	C5, P5	8	3		DR, ID

CO4	Be able to evaluate the designed product/service solution with standard scientific specification and communicate the final outcomes.	PO3	C6	5	1	2	FR, FPr, FD
CO5	Be able to integrate relevant engineering tools in the process of project design, development and implementation.	PO5	P4, A4	6	1	5	DR, ID, FD
CO6	Be capable in understanding the ethical values and professional responsibilities to the society in the different phases of the designed project.	PO8	A4	7	5	2	FR, FPr
CO7	Be able to demonstrate the understanding of the project impact on environmental and sustainability.	PO7	C2	7	4		PR, PPr
CO8	Be able to assess societal, health, safety, legal and cultural issue related to the designed project.	PO6	C5	7	4		FR, FPr
CO9	Be able to demonstrate leadership skills, ability to work independently and in a team through project development phases.	PO9	A5			1	FPr, FD
CO10	Be able to develop communication skill through technical report writing and presentation.	PO10	A2			1	FR, FPr
CO11	Be able to conduct financial investment analysis and estimate the project cost.	PO11	C2, P2, A3			2	PR, PPr FR, FPr
CO12	Be able to verify the designed problem technological, geographical and cultural adaptation in broader context.	PO12	A5			4	FR
CO13	Be competent in understanding of project time, stakeholder and risk management and able to prepare detail project work breakdown structure (WBS).	PO11	C3, P4, A3			2	PR, PPr FR, FPr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile; IR- Initial Report, Proposal Report -PR, Proposal Presentation – PPr, Designed Report – DR, Initial Demonstration – ID, FR-Final Report, FPr-Final Presentation, FD- Final Demonstration

COURSE CONTENT

Every student will be required to undertake a suitable Final Year Design and Research Project during Level-4 (Term-I&II or Spring & Fall Term) in consultation with the Head of the Department and the faculty guide (or Supervisor) and submit the project or thesis at the end of Level-4 (Fall Semester) on dates announced by the institute (department).

CO-PO MAPPING

No.	Course Outcome	PROGRAM OUTCOMES (PO)

0					_	_	Con	, 50	5)) 0, 0	u oy	DIVIL	Depari	-
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to identify the research gap and formulate a research problem related to biomedical engineering.		3										
CO2	Be able to design an appropriate engineering product/service solution that meets the required technical standard and specifications.			3									
CO3	Be proficient in investigating the performance of the designed engineering product/service prototype.				3								
CO4	Be able to evaluate the designed product/service solution with standard scientific specification and communicate the final outcomes.			3									
CO5	Be able to integrate relevant engineering tools in the process of project design, development and implementation.					3							
CO6	Be capable in understanding the ethical values and professional responsibilities to the society in the different phases of the designed project.								3				
CO7	Be able to demonstrate the understanding of the project impact on environmental and sustainability.											3	
CO8	Be able to assess societal, health, safety, legal and cultural issue related to the designed project.						3						
CO9	Be able to demonstrate leadership skills, ability to work independently and in a team through project development phases.									3			
CO10	Be able to develop communication skill through technical report writing and presentation.										3		
CO11	Be able to conduct financial investment analysis and estimate the project cost.											3	
CO12	Be able to verify the designed problem technological, geographical and cultural adaptation in broader context.												2
CO13	Be competent in understanding of project time, stakeholder and risk management and able to prepare detail project work breakdown structure (WBS).											3	

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Practical / Tutorial / Studio	56
Self-Directed Learning	
Project design and background Research Work under the supervision of Supervisor	84
Project work/Simulation practice at Lab	84
Preparation of report and presentation and demonstration	40
Formal Assessment	
Demonstration	3
Presentation	3
Total	270

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Comp	onents	Grading		21001113
	Initial Report (IR)	10%	CO 1	C4
	Proposal		CO 2	C4
	Report (PR)	200/	CO 7	C2
Continuous Assessment	and Proposal Presentation	30%	CO13	C3, P4, A3
(60%)	(PPr)		CO 11	C2, P2, A3
	Designed		CO3	C5, P5
	Report – (DR)	10%	CO5	P4, A4
	Initial		CO3	C5, P5
	Demonstratio n (ID)	10%	CO5	P4, A4
inal Report a	nd presentation	25%	CO 4	C6

Course Offered by BME Department

		CO 6	A4
		CO 8	C5
		CO 9	A5
		CO 10	A2
		CO 11	C2, P2, A3
		CO 12	A5
		CO 13	C3, P4, A3
Final demonstration	15%	CO 5	P4, A4
Final defiloustration	1370	CO 6	A4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

Books as per the guideline of Faculty Guide or Supervisor.

Elective Course Offered

6.2.1 Group-I (Instrumentation)

6.2.1.1 BME 411 Physiological Control System

COURSE INFORMATION					
Course Code	: BME 411	Lecture Contact Hours	: 3.00		
Course Title	: Physiological Control Systems	Credit Hours	: 3.00		

PRE-REQUISITE

BME 201:Human physiology

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to prepare students for a clear concept about control system designing of the biomedical engineering devices. Modeling a system regarding mathematical aspect as well as electromechanical environment needs a deep concept about control system. Since biomedical devices are fully concerned with our physiological behavior and its control, this subject merges the concept of engineering control system and physiological control system to provide the students a sufficient knowledge regarding the mechanism of Physiological Control System.

OBJECTIVE

- 1. Be able to apply various concepts and laws to analyze a variety of dynamic systems.
- 2. Be able to understand the key strategies that the body uses to regulate its function.
- 3. Be able to develop an understanding for control system theory as applied to human physiology.
- 4. Be able to apply linear control theory to model and analyze biological systems.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply various concepts and laws to analyze a variety of dynamic systems.	СЗ	2	1	-	1,3	T, F
CO2	Be able to understand the key strategies that the body uses to regulate its function.	C2	1	1	-	1	T, F
СОЗ	Be able to develop an understanding of control system theory as applied to human physiology.	C2	1	1	-	1	MID, F
CO4	Be able to apply linear control theory to model and analyze biological systems.	C3, C4	2,3	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Introduction to physiological modelling: what is a model and why model, multi-scale organization of living organisms: cell to organ Homeostasis. Examples of physiological control systems

Tools for modelling physical systems: Review of linear systems, Laplace transform, Fourier series and Fourier transform, and system response in the time and frequency domains, transfer function, open-loop control, feedback control, and stability of systems, steady-state and transient analysis, design of PID controllers.

Physiology of cardiovascular systems: Key events in the cardiac cycle, blood pressure and flow, vascular impedance, lumped parameter models, Windkessel model of circulation, cardiac mechanics.

Physiology of Endocrine system: Enzymes and hormones, Michaelis-Menten enzyme kinetics, examples of endocrine control: glucose-insulin system, thyroid hormone system,

Physiology of Nervous System: Anatomy and physiology of nerves, action potentials, Hodgkin-Huxley model, **Physiology of Respiratory System:** Respiratory mechanics, lung models.

Physiology of Musculoskeletal System: Muscle anatomy and physiology. How muscles contract. Hill model of muscle contraction, Muscle stretch reflex.

Modeling complex physiological systems: Regulation of cardiac output: Starling's law, pressure-volume curves, coupled model of cardiopulmonary system, Blood pressure regulation: Baroreceptor reflex, kidney for blood pressure regulation, Blood glucose regulation: insulin control of glucose, glucose utilization in muscle.

SKILL MAPPING

No. Course Learning Outco	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply various concepts and laws to analyze a variety of dynamic systems.		3										
CO2	Be able to understand the key strategies that the body uses to regulate its function.	3											
СОЗ	Be able to develop an understanding for control system theory as applied to human physiology.	3											
CO4	Be able to apply linear control theory to model and analyze biological systems.		3	3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21

Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Торіс	Assessment
1	Introduction to physiological modeling	
Lecture 1	Course Introduction. What is a model and why model?	
Lecture 2	Multi-scale organization of living organisms: Cell to organ Homeostasis	
Lecture 3	Examples of physical control systems and physiological control systems. Difference between Physical and Physiological Control System	CT – 1, Final
2	Tools for modeling physical systems	
Lecture 4	Review of linear systems	
Lecture 5	Fourier series analysis	
Lecture 6	Fourier transform analysis	
3	Tools for modeling physical systems	
Lecture 7	Mathematical explanation of Laplace transform	
Lecture 8	System response in the time Domain and frequency domains	
Lecture 9	Open loop control and feedback control System	
4	Transfer function analysis	
Lecture 10	Ordinary differential equation solving by Laplace transform and inverse Laplace transformation	
Lecture 11	Transfer function calculation of electrical system	
Lecture 12	Mechanical to electrical analogous circuit analysis	
5	Transfer function analysis	
Lecture 13	Electrical to mechanical analogous circuit analysis	
Lecture 14	Mechanical Translational Circuit	
Lecture 15	Development of a practical application of transfer function based on some physiological control system	Midterm, Final
6	Control system stability analysis	
Lecture 16	Stability of systems	
Lecture 17	Steady-state analysis	
Lecture 18	System's transient state analysis	
7	Control system stability analysis	
Lecture 19	Design of a Proportional and Integral Controller	

Lecture 20	Design of a Differential controller	
Lecture 21	Design of a PID controller with physiological examples	
	Midterm	
8	Physiology of cardiovascular systems	
Lecture 22	Basic anatomy of Heart	
	Key events in the cardiac cycle	
Lecture 23	Blood pressure and flow	
Lecture 24	Vascular impedances in heart	
9	Physiology of cardiovascular systems	
Lecture 25	Lumped parameter models	CT – 2, Final
Lecture 26	Windkessel model of circulation	
Lecture 27	Overall control system of cardiac mechanics	
10	Physiology of Endocrine system	
Lecture 28	Enzymes and hormones,	
Lecture 29	Michaelis-Menten enzyme kinetics	
Lecture 30	Glucose insulin system thyroid hormone system	
11	Physiology of Nervous and Respiratory system	
Lecture 31	Anatomy and physiology of nerves, action potentials,	
Lecture 32	Hodgkin-Huxley model,	
Lecture 33	Respiratory mechanics and lung models	
12	Physiology of Musculoskeletal System:	
Lecture 34	Muscle anatomy and physiology	
Lecture 35	How muscles contract	
Lecture 36	Hill model of muscle contraction	CT – 3, FINAL
	Muscle stretch reflex.	
13	Modeling complex physiological systems	
Lecture 37	Starling's law of Cardiac output Regulation	
	Pressure volume curves	
Lecture 38	coupled model of cardiopulmonary system	
Lecture 39	Blood pressure regulation and Baroreceptor reflex	FINAL
14	Modeling complex physiological systems	7
Lecture 40	Kidney for blood pressure regulation,	
Lecture 41	Insulin control system of blood glucose	7
Lecture 42	Glucose utilization mechanism in muscle	

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Comp	onents	Grading	CO	Blooms Taxonomy
Continuous	Class Test/			
Assessment	Assignment	20%	CO1, CO3	C2, C3
(40%)	1-3			

Course Offered by BME Department

	Class Participation	5%	CO3	C3
	Midterm	15%	CO2	C4
			CO 1	C2
Final Exam		60%	CO 2	C2
Fillal	rmai Exam	0070	CO 3	C3
			CO 4	C3, C4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P= Psychomotor domain, A= Affective Domain)

TEXT BOOKS

1. M.C.K. Khoo, Physiological Control Systems: Analysis, Simulation, and Estimation, IEEE Engineering in Medicine and Biology Society, Wiley & Sons, ISBN 0-7803-3408-6.

REFERENCE BOOKS

2. R.C. Dorf and R.H. Bishop, Modern Control Systems, 12th Edition, Prentice Hall.

REFERENCE SITE

--

6.2.1.2 BME 413 Virtual Bioinstrumentation

COURSE INFORMATION					
			: 3.00		
Course Code Course Title	: BME 413 : Virtual Bioinstrumentation	Lecture Contact Hours Credit Hours	: 3.00		

PRE-REQUISITE

BME 207: Biomedical Instrumentation and Measurements

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To impart adequate knowledge on Virtual Instrumentation for acquisition and analysis of signals in medical system, to educate about the basic concepts of VI, programming concepts of VI, enable them to implement VI in medical systems and design Virtual Biomedical Instruments.

OBJECTIVE

- 1. Be able to **understand** the concept of virtual instruments, its importance and applications of virtual instrumentation.
- 2. Be able to learn about data acquisition concept, hardware and software.
- 3. Be able to **design** and **test** virtual biomedical instruments.
- 4. Be able to **develop** virtual biomedical instruments.

COURSE OUTCOMES & GENERIC SKILLS

NI -	Common Ontonio	Bloom's	DO.	CD	CA	I/D	Assessment
No.	Course Outcome	Taxonomy	PO	CP	CA	KP	Methods

Course Offered by BME Department

CO1	Be able to understand the concept of virtual instruments, its importance and applications of virtual instrumentation	C2	1	1	-	1	T, F
CO2	Be able to learn about data acquisition concepts, hardware and software.	C2	1	1	-	1	T, F
CO3	Be able to design and test virtual biomedical instruments.	C4,C5	2	1	-	1,3	MID, F
CO4	Be able to develop virtual biomedical instruments.	С6	2,3	1,3	-	1,3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember C2 - Underst	nd C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
------------------------------	---------------	--------------	---------------	-------------

COURSE CONTENT

INTRODUCTION TO VIRTUAL INSTRUMENTATION (VI): Review of Virtual Instrumentation, Historical perspective, Need of VI, Advantages of VI, Define VI, block diagram & architecture of VI, data flow techniques, graphical programming in data flow, comparison with conventional programming.

VI PROGRAMMING Techniques: Programming Techniques, VIS & Sub VIS, loops & charts, arrays, clusters, graphs, case & sequence structures, formula modes, local and global variable, string & file input.

HARDWARE ASPECTS OF VI SYSTEM: Data Acquisition basics: , Analog input: sampling rate, multiplexing, resolution, relative accuracy, noise, Analog output, Triggers, Real-Time system integration, Digital I/O. Timing I/O, ADC, DAC; PC-Based DAQ System: PC, transducers and signal conditioners, DAQ Hardware, , DIO, Counters & timers, Multichannel analog DAQ system, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation.

COMMON INSTRUMENT INTERFACE: Common Instrument Interfaces for Current loop, RS 232C/Rs 485, GPIB, System basics, interface basics: USB, PCMCIA, VXI, SCXI, PXI etc, networking basics for office & industrial application, VISA and IVI.

VI ANALYSIS TOOLS: Use of Analysis tools, Fourier transforms, power spectrum, correlation methods, Windowing and filtering.

APPLICATIONS of VI: Application of VI in process control designing of equipment like oscilloscope, Digital multimeter, Design of digital Voltmeters with transducer input Virtual Laboratory, Web based Laboratory, Image acquisition & processing, Motion Control, VI based temperature monitor, VI based cardiac monitor, Multi-channel data acquisition using LABVIEW, ECG acquisition for long term monitoring of heart rate using VI, ECG signal processing and its importance using wavelet transform. Bio-Informatics and NI LabVIEW technology in drug discovery process. Testing of Medical Instruments.

SKILL MAPPING

					PR	OGI	RΔN	<u> 1 OI</u>	ITCC	MES	(PO)		
No.	No. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the concept of virtual instruments, its importance and applications of virtual instrumentation	3											
CO2	Be able to learn about data acquisition concept, hardware and software.	3											
СОЗ	Be able to design and test virtual biomedical instruments.		3										
CO4	Be able to develop virtual biomedical instruments.		3	3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

		у ВМЕ Дерантен
Week	Topic	Assessment
1	INTRODUCTION TO VIRTUAL INSTRUMENTATION (VI)	
Lecture 1	Review of Virtual Instrumentation, Historical perspective, Need of	
	VI, Advantages of VI, Define VI	
Lecture 2	Block diagram & architecture of VI	
Lecture 3	Data flow techniques, graphical programming in data flow,	CT – 1, Final
	comparison with conventional programming.	
2	HARDWARE ASPECTS OF VI SYSTEM	
Lecture 4	Data Acquisition (DAQ) basics	
Lecture 5		
Lecture 6	Analog to Digital Converter (ADC)	
3	HARDWARE ASPECTS OF VI SYSTEM	
Lecture 7	Analog to Digital Converter (ADC)	
Lecture 8	Digital to Analog Converter (DAC)	
Lecture 9		
4	HARDWARE ASPECTS OF VI SYSTEM	
Lecture 10	PC-Based DAQ System: PC, transducers and signal conditioners,	
Lecture 11	DAQ	
	Hardware	
Lecture 12	Multichannel analog DAQ system	
5	HARDWARE ASPECTS OF VI SYSTEM	
Lecture 13	DIO, DMA for DAQ	
Lecture 14	Counters, timers, interrupts for DAQ	
Lecture 15	PC Hardware structure, Software and Hardware Set up for VI.	Midterm, Final
6	COMMON INSTRUMENT INTERFACE	
Lecture 16	Common Instrument Interfaces for Current loop, RS 232C/Rs 485,	
Lecture 17	GPIB, System basics	
Lecture 18	Interface basics: USB, PCMCIA	
7	COMMON INSTRUMENT INTERFACE	
Lecture 19	Interface basics: VXI, SCXI, PXI etc	
Lecture 20	networking basics for office & industrial application,	
Lecture 21	VISA and IVI.	
	Midterm	
8	VI PROGRAMMING Techniques	
Lecture 22	Programming Techniques, VIS & Sub VIS	
Lecture 23	Loops & charts, string & file input.	
Lecture 24	arrays, clusters	
9	VI PROGRAMMING Techniques	
Lecture 25	Graphs, waveforms	
Lecture 26	case & sequence structures	CT – 2, Final
Lecture 27	formula modes, local and global variable	
10	VI ANALYSIS TOOLS	
Lecture 28	Use of Analysis tools: Fourier transforms, power spectrum,	
-	correlation methods, Windowing and filtering.	
Lecture 29	Use of Analysis tools: power spectrum, correlation methods	

Lecture 30	Use of Analysis tools: Windowing and filtering.	
11	APPLICATIONS of VI	
Lecture 31	Application of VI in process control designing of equipments like	
	oscilloscope, Digital multimeter	
Lecture 32	Design of digital Voltmeters with transducer input Virtual Laboratory	
Lecture 33	Web based Laboratory	
12	APPLICATIONS of VI	CT – 3, FINAL
Lecture 34	Image acquisition & processing	
Lecture 35	Motion Control	
Lecture 36	VI based temperature monitor	
13	APPLICATIONS of VI	
Lecture 37	VI based cardiac monitor	
Lecture 38	Multi-channel data acquisition using LABVIEW	
Lecture 39	ECG acquisition for long term monitoring of heart rate using VI	
14	APPLICATIONS of VI	
Lecture 40	ECG signal processing and its importance using wavelet transform.	FINAL
Lecture 41	Bio-Informatics and NI labVIEW technology in drug discovery process.	
Lecture 42	Testing of Medical Instruments.	

ASSESSMENT STRATEGY

Comr	nonants	Grading	CO	Blooms Taxonomy
Components		Grading		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3	C2, C4,C5
(40%)	Class Participation	5%	CO3	C4,C5
	Midterm	15%	CO2	C2
			CO 1	C2
Final	Evom	60%	CO 2	C2
Final Exam		0076	CO 3	C4,C5
		Ī	CO 4	C6
Total Marks 100		100%		

(CO = Course Outcome, C = Cognitive Domain, P= Psychomotor domain, A= Affective Domain)

TEXT BOOKS

- 1. Olansen Jon B. and Rosow Eric, "Virtual Bio-Instrumentation Biomedical, Clinical, and Healthcare Applications in LabVIEW", National instrument Virtual instrument series
- 2. Gary Jonson, "Labview Graphical Programming", Second Edition, McGraw Hill, New York, Fourth edition 2006

REFERENCE BOOKS

- 3. Kevin James, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Newness, 2000.
- 4. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGraw Hill.

REFERENCE SITE

==

6.2.1.3 BME 415 Biophotonics

COURSE INFORMATION										
Course Code Course Title	: BME 415 : Biophotonics	Lecture Contact Hours Credit Hours	: 3.00 : 3.00							

PRE-REQUISITE

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is designed for delivering the knowledge about the magical properties of photobiology and their wide applications in different fields of biomedical engineering.

OBJECTIVE

- 1. To deliver the fundamental principles of biophotonics
- 2. To connect the students learning about the wide application of different optical devices in different fields of biomedical engineering.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the fundamental knowledge about the photobiology	C2	1	1	-	1,3	T, MID
CO2	Be able to familiarize with different optical devices in biomedical engineering domain	C2	1	1,3	-	1,3	MID, F
СОЗ	Be able to learn about the working principles of different optical devices	C2	1	1,2	-	1,2	MID, F
CO4	Be able to apply the knowledge of biophotonics in different medical applications	С3	1	1,3	ı	1,2	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Introduction to Biophotonics: Photonics in medical applications, properties of light and matter, light-matter interactions, interaction of light with cells, interaction of light with tissues; **Laser Technology**: Principles of Lasers, Laser-tissue Interaction, Lasers for biophotonics, laser safety; **Optical Fiber and Light**: Optical fiber construction, principles of light propagation in optical fiber, losses and dispersion in fiber optics. **Instrumentation in Photonics**: Instrumentation for absorption, Scattering, and Emission, high pressure arc lamp, LEDs, Optical detectors; **Photonics**

in Bioimaging: An overview of optical imaging, Simple and compound microscope, Fluorescence Microscopy, Fluorescence Resonance Energy Transfer (FRET) Imaging, Fluorescence Lifetime Imaging Microscopy (FLIM), Raman Scattering Microscopy.

Medical application of lasers: Thermal interaction between laser and Tissue, Application of Lasers in therapy and diagnosis, Surgical Applications of Lasers, Lasers in Dentistry and urology, Laser Tissue Contouring and Restructuring, Tissue welding, Laser Tissue Regeneration, Laser Tweezers and Laser Scissors; Endoscopy: Angioscope, Videoscopy, Fluorescence endoscopy, Endoscopic therapy; Optical Biosensors: Principles of Optical Biosensing, Optical Transduction, Fluorescence Sensing, Fiber-Optic Biosensors, Evanescent Wave Biosensors, Surface Plasmon Resonance Biosensors; Microarray Technology: DNA Microarray Technology, cell and tissue microarray technology, Light-Activated Therapy: Basic mechanism of Photodynamic Therapy, Applications of Photodynamic Therapy, Two-Photon Photodynamic Therapy.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the fundamental knowledge about the photobiology	2											
CO2	Be familiarized with different optical devices in biomedical engineering domain	3											
СОЗ	Be able to learn about the working principles of different optical devices	3											
CO4	Be able to apply the knowledge of biophotonics in different medical applications												

Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	42				
Practical / Tutorial / Studio	-				
Student-Centred Learning	-				
Self-Directed Learning					
Non-face-to-face learning	42				
Revision of the previous and (or) subsequent lecture at home	21				
Preparation for final examination	21				
Formal Assessment					
Continuous Assessment	2				
Final Examination	3				
Total	131				

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Wash	Tonia	A ssassmant
Week 1	Topic Introduction to Biophotonics	Assessment
Lecture 1	Photonics in medical applications, properties of light and matter	
Lecture 2	light-matter interactions	
Lecture 3	Interaction of light with cells, interaction of light with tissues	
2	Laser Physics	
Lecture 4	Principles of Lasers, ,	CT – 1, Final
Lecture 5	Laser-tissue Interaction	
Lecture 6	Lasers for biophotonics, laser safety	
3	Optical Fiber and Light	
Lecture 7	Optical fiber construction,	
Lecture 8	Principles of light propagation in optical fiber	
Lecture 9	Losses and dispersion in fiber optics	
4	Instrumentation in Photonics	
Lecture 10	Instrumentation in Flotonics Instrumentation for absorption	
Lecture 10 Lecture 11	Instrumentation for absorption Instrumentation for Scattering	
Lecture 12	Instrumentation for Emission	
5	Instrumentation in Photonics	
Lecture 13	high pressure arc lamp	
Lecture 14	LEDs, Optical detectors	
Lecture 15		Midterm, Final
6	Photonics in Bioimaging	Wildterin, Finar
Lecture 16	An overview of optical imaging	
Lecture 17	Simple and compound microscope	
Lecture 18	Fluorescence Microscopy	
7	Photonics in Bioimaging	
Lecture 19	Fluorescence Resonance Energy Transfer (FRET) Imaging	
Lecture 20	Fluorescence Lifetime Imaging Microscopy (FLIM)	
Lecture 21	Raman Scattering Microscopy	
	Midterm Break	
8	Medical application of lasers	
Lecture 22	Thermal interaction between laser and Tissue	
Lecture 23	Application of Lasers in therapy	
Lecture 24	Application of Lasers in diagnosis	
9	Medical application of lasers	
Lecture 25	Surgical Applications of Lasers	
Lecture 26	Lasers in Dentistry and urology	CT – 2, Final
Lecture 27	Laser Tissue Contouring and Restructuring	
10	Medical application of lasers	
Lecture 28	Tissue welding, Laser Tissue Regeneration	
Lecture 29	Laser Tweezers	
Lecture 30	Laser Scissors	
11	Endoscopy	
Lecture 31	Angioscope, Videoscopy	
Lecture 32	Fluorescence endoscopy	

Lecture 33	Endoscopic therapy			
12	Optical Biosensors			
Lecture 34	Principles of Optical Biosensing, Optical Transduction			
Lecture 35	Fluorescence Sensing, Fiber-Optic Biosensors			
Lecture 36	Evanescent Wave Biosensors, Surface Plasmon Resonance			
	Biosensors			
13	Microarray Technology			
Lecture 37	DNA Microarray Technology			
Lecture 38	Cell and tissue microarray technology			
Lecture 39	Cen and dissue inicroarray technology	FINAL		
14	Light-Activated Therapy	FINAL		
Lecture 40	Basic mechanism of Photodynamic Therapy			
Lecture 41	Applications of Photodynamic Therapy			
Lecture 42	Two-Photon Photodynamic Therapy			

ASSESSMENT STRATEGY

Comp	Components		CO	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2	C1, C2
(40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C1
Final	Final Exam		CO 1	C2
rinai			CO 2	C2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Introduction to Biophotonics", Paras N. Prasad, A. John Wiley and Sons, Inc. Publications, 2003.
- 2. Laser-Tissue Interaction Fundamentals and Applications, Markolf H.Niemz, Springer, 2007

REFERENCE BOOKS

3. Lasers and Optical Fibers in Medicine, Abraham Katzir, Academic Press Inc.

REFERENCE SITE

6.2.1.4 BME 417 Equipment in Radiology and Radiotherapy

COURSE INFO	COURSE INFORMATION						
Course Code	: BME 417	Lecture Contact Hours	: 3.00				
Course Title	: Equipment in Radiology and Radiotherapy	Credit Hours	: 3.00				

PRE-REQUISITE

PHY 125: Waves and Oscillations, Optics and Modern Physics

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course is designed to give the basic concepts of Radiation physics, Radiation measurement instruments and Radiotherapy equipment.

OBJECTIVE

- 1. Be able to understand the basics of Radiation physics
- 2. Be able to understand the principles of Radiation measuring instruments
- 3. Be able to learn the principles of Radiotherapy equipment.
- 4. Be able to analyze the Quality Assurance techniques of Radiotherapy Equipment

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	PO	СР	CA	KP	Assessment Methods
CO1	Be able to understand the basics of Radiation physics	C2	1	1	-	1	T, F
CO2	Be able to understand the principles of Radiation measuring instruments	C2	1	1	-	1	T, F
СОЗ	Be able to learn the principles of Radiotherapy equipment.	СЗ	1	1	-	1,3	MID, F
CO4	Be able to analyze the Quality Assurance techniques of Radiotherapy Equipment	C4	2,3	1,3	-	1,3	T, F
CO5	Be able to critically review recent articles from the scientific literature and identify areas of research opportunities.	С6	3,9,12	5	5	5	PR, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

υ ,	/ 1	,	/		
C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

BASIC RADIATION PHYSICS: Introduction to Radiology and radiotherapy, Overview of atomic and nuclear structure, Electron interactions, Photon interactions

DOSIMETRIC PRINCIPLES, QUANTITIES AND UNITS: Photon fluence and energy fluence, KERMA, CEMA, absorbed dose, stopping power, Relationships between various dosimetric quantities, Cavity theory

RADIATION DOSIMETERS: Properties of dosimeters, Ionization chamber dosimetry systems, Film dosimetry, Luminescence dosimetry, Semiconductor dosimetry, Other dosimetry systems, primary standards

RADIATION MONITORING INSTRUMENTS: Operational quantities for Radiation monitoring, Ionization chambers, Proportional counters, Neutron area survey meters, Geiger-Müller counters, Scintillator detectors, Semiconductor detectors, Commonly available features of area survey meters, Calibration of survey meters, Properties of survey meters

RADIATION MONITORING INSTRUMENTS: Individual monitoring: Film badge, Thermoluminescence dosimetry badge, Radiophotoluminescent glass dosimetry systems, Optically stimulated luminescence systems, Direct reading personal monitors, Calibration of personal dosimeters, Properties of personal monitors.

TREATMENT MACHINES FOR EXTERNAL BEAM RADIOTHERAPY: X-RAY beams and X-RAY units, GAMMA-RAY beams and GAMMA RAY units, Particle accelerators: Betatron, Cyclotron, Microtron, LINAC generations, Safety of LINAC installations, Linac treatment head, Production of clinical photon beams in a LINAC, Beam collimation, Components of modern LINACs, Configuration of modern LINACs, Radiofrequency power generation system, Microwave power transmission, Accelerating waveguide, Injection system, Auxiliary system, Electron beam transport, Production of clinical electron beams in a LINAC, Dose monitoring system, Radiotherapy with protons, neutrons and Heavy ions, Introduction of Simulator, Description of the Standard Simulator, Special Features, Simulators and Computed Tomography simulators

QUALITY ASSURANCE OF EXTERNAL BEAM RADIOTHERAPY: Quality assurance in radiotherapy, Quality control, Quality standards, Need for quality assurance in radiotherapy, Requirements on accuracy in radiotherapy, Managing a quality assurance programme, quality assurance programme for equipment, Treatment delivery, and Quality audit.

BRACHYTHERAPY-PHYSICAL AND CLINICAL ASPECTS: Introduction and photon source characteristics, Clinical use and dosimetry systems, Dose distributions around sources, Dose calculation procedures, Commissioning of brachytherapy computer, Treatment planning systems, Source commissioning, Quality Assurance.

SPECIAL PROCEDURES AND TECHNIQUES IN RADIOTHERAPY: Image guided radiotherapy, Overview of Stereotactic irradiation, Total body irradiation, Total skin electron irradiation, Intraoperative radiotherapy, Endocavitary Rectal irradiation, Conformal radiotherapy

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basics of	3											
COI	Radiation physics)											
CO2	Be able to understand the principles of	3											
Radiation measuring instruments)											
CO3	Be able to learn the principles of	3											
CO3	Radiotherapy equipment.)											
CO4	Be able to analyze the Quality Assurance		3	1									
CO4	techniques of Radiotherapy Equipment		3	1									
	Be able to critically review recent articles												
CO5	from the scientific literature and identify			3						3			2
	areas of research opportunities.												

Page | 363

	Course Of	Jerea by BME Department
TEACHING LEA	RNING STRATEGY	
Teaching and Learn	ning Activities	Engagement (hours)
Face-to-Face Learn	_	Zingargement (news)
Lecture		42
	/ Tutorial / Studio	-
	Centred Learning	<u>-</u>
Self-Directed Learn	_	
	to-face learning	42
	of the previous and (or) subsequent lecture at home	21
	on for final examination	21
Formal Assessmen		21
	us Assessment	2
Final Exa		3
Total		131
		131
TEACHING MET	THODOLOGY	
Lecture and discus	sion, Co-operative and collaborative method, Problem based method	
	-	
COURSE SCHEI	DULE	
Week	Topic	Assessment
1	Basic radiation physics	
Lecture 1	Introduction to Radiology and radiotherapy, Overview of	
	atomic and nuclear structure, Classification of radiation	
Lecture 2	Electron interactions	
Lecture 3	Photon interactions	CT – 1, Final
2	Dosimetric principles, quantities and units	
Lecture 4	Photon fluence and energy fluence, KERMA, CEMA, absorbed	
	dose, stopping power	
Lecture 5	Relationships between various dosimetric quantities	
Lecture 6	Cavity theory	
3	Radiation Dosimeters	
Lecture 7	Properties of dosimeters, Ionization chamber dosimetry	
Lecture /	systems	
Lecture 8	Film dosimetry, Luminescence dosimetry	
Lecture 9	Semiconductor dosimetry, Other dosimetry systems, primary	
Lociale)	standards	
4	Radiation monitoring instruments	
Lecture 10	Operational quantities for Radiation monitoring, Ionization	
Lecture 10	chambers	
Lecture 11	Proportional counters, Neutron area survey meters,	
Lecture 12	Geiger–Müller counters	
	-	
Lastuma 12	Radiation monitoring instruments	
Lecture 13	Scintillator detectors, Semiconductor detectors	
Lecture 14	Commonly available features of area survey meters, Properties	Midterm, Final
	of survey meters	white in, final

		ered by BME Department
Lecture 15	Calibration of survey meters	
6	Radiation monitoring instruments	
Lecture 16	Individual monitoring: Film badge, Thermoluminescence dosimetry badge	
Lecture 17	Radiophotoluminescent glass dosimetry systems, Optically stimulated luminescence systems,	
Lecture 18	Direct reading personal monitors, Calibration of personal dosimeters, Properties of personal monitors	
7	Treatment machines for External Beam Radiotherapy	
Lecture 19	X-RAY beams and X-RAY units, GAMMA-RAY beams and GAMMA RAY units	
Lecture 20 Lecture 21	Particle accelerators: Betatron, Cyclotron, Microtron	
	Midterm	
8	Treatment machines for External Beam Radiotherapy	
Lecture 22	LINAC principle, LINAC treatment head, Safety of LINAC installations	
Lecture 23	Production of clinical photon beams in a LINAC, Beam collimation	
Lecture 24	Components of modern LINACs , Configuration of modern LINACs	CT – 2, Final
9	Treatment machines for External Beam Radiotherapy	
Lecture 25	Radiofrequency power generation system, Microwave power transmission, Accelerating waveguide	
Lecture 26	Injection system, Auxiliary system, Electron beam transport	
Lecture 27	Production of clinical electron beams in a LINAC, Dose monitoring system	
10	Treatment machines for External Beam Radiotherapy	
Lecture 28	Radiotherapy with protons, neutrons and Heavy ions	
Lecture 29	Introduction of Simulator, Description of the Standard Simulator, Special Features	
Lecture 30	Simulators and Computed Tomography simulators	
11	QUALITY ASSURANCE of External Beam Radiotherapy	
Lecture 31	Quality assurance in radiotherapy, Quality control, Quality standards, Need for quality assurance in radiotherapy, Requirements on accuracy in radiotherapy	
Lecture 32	Managing a quality assurance programme, quality assurance programme for equipment	
Lecture 33	Treatment delivery, Quality audit	
12	Brachytherapy: Physical and Clinical aspects	CT – 3, FINAL
Lecture 34	Introduction and photon source characteristics	
Lecture 35	Clinical use and dosimetry systems	
Lecture 36	Dose distributions around sources, Dose calculation procedures	
13	Brachytherapy: Physical and Clinical aspects	
Lecture 37	Commissioning of brachytherapy computer Treatment planning systems	FINAL
Lecture 38	Source commissioning, Quality Assurance	

Lecture 39	Brachytherapy versus External Beam Radiotherapy			
14	Special procedures and techniques in radiotherapy +			
	Radiation Protection & Safety			
Lecture 40	Image guided radiotherapy			
Lecture 41	Overview of Stereotactic irradiation, Total body irradiation,			
	Total skin electron irradiation, Intraoperative radiotherapy,			
	Endocavitary Rectal irradiation, Conformal radiotherapy			
Lecture 42	Radiation protection and safety in radiotherapy: Overview			

ASSESSMENT STRATEGY

	Components Grading		СО	Blooms Taxonomy		
Comp	Components			Brooms Taxonomy		
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3	C2, C4		
	Class Participation	5%	CO3	C2		
	Midterm	15%	CO2	C4		
	·		CO 1	C2		
Einal	Evans	60%	CO 2	C2		
Final Exam		00%	CO 3	C2		
			CO 4	C4		
Total	Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, P= Psychomotor domain, A= Affective Domain)

TEXT BOOKS

1. E.B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, IAEA 2005.

REFERENCE BOOKS

2. Faiz M. Khan, John P. Gibbons, The Physics of Radiation Therapy, 5th Edition, Lippincott Williams and Wilkins.

REFERENCE SITE

--

6.2.2 Group-II (Regenerative Medicine)

6.2.2.1 BME 419 Drug Development and Delivery System

COURSE INFORMATION							
Course Code	: BME 419	Lecture Contact Hours	: 3.00				
Course Title	: Drug development and delivery systems	Credit Hours	: 3.00				

PRE-REQUISITE

BME 203: Biochemistry BME 303: Biomaterials

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to prepare students for an academic and industrial career in pharmaceutics and/or drug delivery. Key concepts in medicinal chemistry is discussed and the pipeline for drug development starting from computational analysis all the way through to clinical trials and commercialization is covered. Drug delivery and targeting methods is also explored in sufficient details.

OBJECTIVE

- 1. Bo be able to **understand** drug design based on functions and activity
- 2. Be able optimize and test drugs for safety, efficacy, and biological activity
- 3. Be able to **understand** and appreciate the levels of clinical trial and testing for drug commercialization
- 4. Be able design and develop drug delivery systems and targeted drug delivery methods

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Bo be able to understand drug design based on functions and activity	C2	1	1	-	1	T, MID, F
CO2	Be able to optimize and test drugs for safety, efficacy, and biological activity	C4, C5	3,6	3	1	1,3	T, MID, F
СОЗ	Be able to understand and appreciate the levels of clinical trial and testing for drug commercialization	C2	1	-	1	-	T,F
CO4	Be able to design and develop drug delivery systems and targeted drug delivery methods	C4, C6	2	1	1	1,3	T, F
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.	C6	3,9,12	5	5	5	PR, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

The course covers the following modules: drug design, drug development, drug toxicity, selectivity, structure activity relationships. drug dosage, drug safety and standards, clinical trials and product validation, drug delivery methods, targeted drug delivery, chemotherapy and cancer therapeutics.

SKILL MAPPING

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Bo be able to understand drug design	3											
	based on functions and activity												
CO2	Be able to optimize and test drugs for			3			1						
002	safety, efficacy, and biological activity						1						
	Be able to understand and appreciate the												
CO3	levels of clinical trial and testing for drug	3											
	commercialization												
	Be able to design and develop drug												
CO4	delivery systems and targeted drug		3										
	delivery methods												
	Be able to critically review recent articles												
CO5	from the scientific literature and identify			3						3			12
	relevant areas of research opportunities.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Week Content	
1	Motivation and course introduction	
Lecture 1	Motivation course	
Lecture 2	Introduction to drug development	
Lecture 3	Drug discovery	
2	Drug development	

Lecture 4	Drug development methods and protocol	CT – 1 and Midterm,
Lecture 5 Target identification, bioinformatics and biological databases		Final
Lecture 6	Bioinformatics and biological databases	rmar
3	Drug development continued	
Lecture 7	Computer aided drug design	
Lecture 8	Lead generation strategies	
Lecture 9	Lead optimization strategies Lead optimization strategies	
	1	
4	Pharmacology Pharmacodynamics and Pharmacokinetics	
Lecture 10		
Lecture 11	Biological activity of drugs	
Lecture 12	Biological activity of drugs	
5	Drug metabolism	
Lecture 13	Introduction to medicinal chemistry	
Lecture 14	Enzyme kinetics	
Lecture 15	Structure Activity Relationships	
6	Drug metabolism continued	
Lecture 16	Structure Activity Relationships	Midterm, Final
Lecture 17	Drug action mechanism	Wilder in, I mai
Lecture 18	Drug action stability	
7	Selective toxicity of drugs	
Lecture 19	Toxicology assessment of novel drugs,	
Lecture 20	In-vitro and in-vivo toxicity (animal models)	
Lecture 21	Drug dosage and toxicity, mechanism of toxicity	
	MIDTERM	
8	Drug safety and testing	
Lecture 22	Drug safety protocols and regulatory standards around the world	
Lecture 23	In-vitro testing	
Lecture 24	In-vivo testing	
9	Clinical trials and commercialization	
Lecture 25	Pre-clinical studies	CT – 2, FINAL
Lecture 26	Multiphase clinical trials	
Lecture 27	Drug manufacturing process and commercialization	
10	Drug delivery techniques 1	
Lecture 28	Administration of drugs - oral	
Lecture 29	Administration of drugs - intravenous, subcutaneous	
Lecture 30	Administration of drugs – other methods	
11	<u> </u>	
11 Lecture 31	Drug delivery techniques 2	
Lecture 31	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery	
Lecture 31 Lecture 32	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery Polymeric drug delivery methods	
Lecture 31 Lecture 32 Lecture 33	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery Polymeric drug delivery methods Liposomal drug delivery	CT – 3, FINAL
Lecture 31 Lecture 32 Lecture 33 12	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery Polymeric drug delivery methods Liposomal drug delivery Drug delivery techniques 3	CT – 3, FINAL
Lecture 31 Lecture 32 Lecture 33 12 Lecture 34	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery Polymeric drug delivery methods Liposomal drug delivery Drug delivery techniques 3 Introduction to gene therapy	CT – 3, FINAL
Lecture 31 Lecture 32 Lecture 33 12 Lecture 34 Lecture 35	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery Polymeric drug delivery methods Liposomal drug delivery Drug delivery techniques 3 Introduction to gene therapy Gene therapy drug delivery	CT – 3, FINAL
Lecture 31 Lecture 32 Lecture 33 12 Lecture 34	Drug delivery techniques 2 Surface modification and chemistry used in drug delivery Polymeric drug delivery methods Liposomal drug delivery Drug delivery techniques 3 Introduction to gene therapy	CT – 3, FINAL

Lecture 37	Drug carriers and molecular carriers	
Lecture 38	Nanoparticle as the drug carrier	
Lecture 39 Stability of nanoparticles as drug carrier		FINAL
14	Targeted drug delivery for cancer	
Lecture 40	Chemotherapy and cancer therapeutics	
Lecture 41	Nanoparticle mediated cancer therapy	
Lecture 42	Nanoparticle mediated cancer therapy	

FINAL EXAMINATION

ASSESSMENT STRATEGY

		CO	Blooms Taxonomy	
Comp	Components			Bioonis Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C2, C4, C5, C6
Assessment (40%)	Class Participation	5%	CO1, CO2, CO3, CO4	C2, C4, C5, C6
	Midterm	15%	CO1, CO2	C2, C4, C5
			CO 1	C2
Final	Exam	60%	CO 2	C4, C5
Fillal	LXaIII	0070	CO 3	C2
			CO 4	C4, C6
Total	Total Marks 100%			

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Recent advances in novel drug carrier systems, Ali Demer Sezer, 2012, InTech Open
- 2. Introduction to medicinal chemistry, Graham L. Patrick, 1995, Oxford University Press

REFERENCE BOOKS

- 1. Drug discovery and development, Izet M. Kapetanovic, 2011, InTech Open
- 2. Basic principles of drug discovery and development, Benjamin E. Blass, 2015, Elsevier
- 3. Computational drug design, David C. Young, 2009, Wiley Online Books

REFERENCE SITE

_

6.2.2.2 BME 421 Nanotechnology in Biomedicine

COURSE INFORMATION								
Course Code	: BME 421	Lecture Contact Hours	: 3.00					
Course Title	: Nanotechnology in Biomedicine	Credit Hours	: 3.00					
	PRE-REQUISITE BME 303: Biomaterials							
CURRICULU	CURRICULUM STRUCTURE							
Outcome Based	Outcome Based Education (OBE)							

SYNOPSIS/RATIONALE

The goal of this course is to introduce students to the world of nanotechnology and its application in biology and medicine. Topics include solid state theory in physics and the fundamentals of nano sciences, optical, mechanical and electrical properties of nanoparticles. Fabrication, characterization and applications of nanotechnology in MEMS, NEMS is also covered

OBJECTIVE

- 1. Be able to **understand** the fundamentals of nanotechnology
- 2. Be able to **synthesize** nanoparticles and nanosystems
- 3. Be able to **characterize** the properties of nanoparticles and nanosystems
- 4. Be able to **design** and **develop** nanosystems for applications in biology

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	PO	СР	CA	KP	Assessment Methods
CO1	Be able to understand the fundamentals of nanotechnology	C2	1	1	-	1	T, MID
CO2	Be able to synthesize nanoparticles and nanosystems	СЗ	1,2	1	1	1	T, MID, F
CO3	Be able to characterize the properties of nanoparticles and nanosystems	C5	1.2	1	1	2	T, MID, F
CO4	Be able to design and develop nanosystems for applications in biology	C4, C6	3,6	1	1	2	T, MID, F
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.	C6	3,9,12	5	5	5	PR, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

The course covers the following modules: solid state physics, properties of nano particles (optical, electrical, mechanical), quantum dots, carbon nanotubes, preparation and fabrication of nanoparticles, characterization of nanoparticles, applications of nanotechnology in medicine, MEMs, NEMs, nanoparticle mediated drug delivery, lab-on-chip and microfluidics technologies used in therapy, diagnostics and prognostics..

SKILL MAPPING

No. Course Learning Outcome		PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the fundamentals of nanotechnology	3											
CO2	Be able to synthesize nanoparticles and nanosystems	3	3										
СОЗ	Be able to characterize the properties of nanoparticles and nanosystems	3	3										
CO4	Be able to design and develop nanosystems for applications in biology			3			1						
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.			3						3			3

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
	Engagement (nours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment			
1	Motivation and course introduction				
Lecture 1	Introduction to nanomaterials and nanotechnology				
Lecture 2	Top-down and bottom up approaches to synthesizing nanoparticles				
Lecture 3	Overview of quantum mechanics in nanotechnology	CT – 1 and Midterm,			
2	Solid-state physics	Final			
Lecture 4	Solid state physics fundamentals in nanoscience				
Lecture 5	Thermal consideration in nanoparticle development				
Lecture 6	Quantum consideration in nanoparticle development				
3	Properties of nanoparticles				
Lecture 7	Size dependence of nanoparticles				

Lecture 8	Surface and bulk properties of nanoparticles	erea by BME Department		
Lecture 9	Nanoscale interactions			
4	Properties of nanoparticles			
Lecture 10				
Lecture 11	1 1			
20000011	resistivity			
Lecture 12	Classification of nanomaterials based on conductivity			
5	Properties of nanoparticles			
Lecture 13	Optical properties of nanoparticles			
Lecture 14	Thermal properties of nanomaterials			
Lecture 15	Magnetic nanoparticles and their properties			
6	Characterization of nanosystems			
Lecture 16	X-Ray diffraction, X-ray absorption spectroscopy, NMR			
Lecture 17	Plasmonic nanoparticles, SERS and RAMAN spectroscopy	Midterm, Final		
Lecture 18	Electron microscopy, Dynamic light scattering, photoelectric			
	emission scattering			
7	Fabrication of nanosystems			
Lecture 19	Lithography techniques for fabricating nanosystems			
Lecture 20	Procedures used in lithography			
Lecture 21	Procedures used in lithography			
Lecture 21	MIDTERM			
8	MEMS and NEMS			
Lecture 22	Introduction to MEMS and NEMS technology			
Lecture 23	Microfluidics applications of MEME and NEMS			
Lecture 24	Etching and bonding in MEMS/NEMS			
9	Synthesis and preparation of nanomaterials			
Lecture 25	Sol-gel method, Chemical Vapor Deposition (CVD), Physical			
Lecture 23	Vapor Deposition (PVD)	CT – 2, FINAL		
Lecture 26	Bonding, characteristics of Carbon nanoparticles - Fullerene			
	and nanotubes			
Lecture 27	Synthesis and properties of Carbon nanoparticles – Fullerene			
	and nanotubes			
10	Nanowires and Quantum dots			
Lecture 28	Nanowires, nanowells, nanocomposites			
Lecture 29	Quantum dots – physics, structure and size dependence			
Lecture 30	Quantum dots – therapeutic and detection of diseases			
11	Molecular Devices			
Lecture 31	DNA nanotechnology, molecular and supramolecular switches			
Lecture 32	Protein, glyco, lipid nanotechnology			
Lecture 33	Biobots and bionanomachines			
12	Nanosensors	CT – 3, FINAL		
Lecture 34	Nanosensors in cancer therapy			
Lecture 35	Nanosensors in cancer diagnostics			
Lecture 36	Nanosensors in point of care diagnostics			
13	Nanotechnology applications			
Lecture 37	Nanosensors in lab-on-chip technologies			
Lecture 3/	ranosonsors in au-on-omp wonnotogies			

Lecture 38	Nanotechnology in tissue engineering	
Lecture 39	FINAL	
14	Nanotechnology applications	
Lecture 40	Cellular uptake and interaction of nanomaterials	
Lecture 41	In-vitro studies, nanotoxicology	
Lecture 42	Revision	

ASSESSMENT STRATEGY

		Grading	СО	Blooms Taxonomy		
	Components			•		
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C2, C3		
Assessment (40%)	Class Participation/Assignment	5%	CO1, CO2, CO3, CO4	C2, C3, C4, C5, C6		
	Midterm	15%	CO1, CO2	C1, C2		
			CO 1	C2		
	Final Exam	600/	CO 2	C3		
Final Exam		60%	CO 3	C5		
			CO 4	C4, C6		
Total Marks		100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Di Ventra, Massimiliano; Evoy, Stephane; Heflin, James R., Introduction to Nanoscale Science and Technology, Springer publications, 2004 (UNITS I, II, III & IV)
- 2. VinodLabhasetwar, Diandra L. Leslie-Pelecky, Biomedical Applications Of Nanotechnology, Wiley-Interscience A John Wiley & Son, Inc., Publication, 2007 (UNIT V)

REFERENCE BOOKS:

- 1. Chattopadhyay, Introduction to Nanoscience and Naotechnology, PHI, 2009
- 2. B.k. Parthasarathy, NanoscienceAnd Nanotechnology, Gyan Books, 2007
- 3. Vicki H. Grassian, Nanoscience And Nanotechnology: Environmental And Health Impacts (Hardcover 2008), John Wiley & Sons
- 4. T. Pradeep, Nano The essentials, McGraw-Hill publishers, 2008
- 5. Bhushan, Bharat (Ed.), Springer Handbook of Nanotechnology, Springer publications, 2nd rev. and extended ed., 2007
- 6. Tuan Vo-Dinh, Nanotechnology in Biology and Medicine: Methods, Devices, and Applications, CRC Press, Jan 2007

REFERENCE SITE

_

6.2.2.3 BME 423 Artificial Organ Development

COURSE INFO	COURSE INFORMATION									
Course Code	: BME 423	Lecture Contact Hours	: 3.00							
Course Title	: Artificial Organ Development	Credit Hours	: 3.00							

PRE-REQUISITE

BME 303 – Biomaterials; BME 203 – Biofluid Mechanics and Heat Transfer; BME 407 – Rehabilitation Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course covers the following modules: introduction to artificial organs, rheological properties of blood, blood viscosity variation, artificial kidney, hemodialyzers, artificial heart-lung machine, audiometry, and hearing aids.

OBJECTIVE

- 1. To identify and analyze the factors and parameters influencing blood flow
- 2. To explain and examine the mechanism of dialysis of kidney, gas exchange in lungs, and sound conduction in ear
- 3. To design and develop artificial kidney, artificial heart-lung machine, and hearing aids

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to apply the factors and parameters influencing blood flow	СЗ	3	-	-	1	T, MID, F
CO2	Be able to understand the mechanism of dialysis of kidney, gas exchange in lungs, and sound conduction in ear	C2	1	-	-	3	T, MID, F
CO3	Be able to analyze the working mechanism of artificial kidney, artificial heart-lung machine, and hearing aids	C4	3	-	-	4	T, F
CO4	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.	C6	3,9,12	5	5	5	PR, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create

COURSE CONTENT

Introduction to Artificial Organs: Biomaterials used in artificial organs and prostheses, inflammation, rejection, correction.

Rheological properties of blood, blood viscosity variation: effect of shear rate, hematocrit, temperature and protein contents. Casson equation, flow properties of blood through the blood vessels, problems associated with extracorporeal blood flow.

Artificial Kidney: Brief of kidney filtration, basic methods of artificial waste removal, hemodialysis, equation for artificial kidney and middle molecule hypothesis.

Hemodialysers: flat plate type, coil type and hollow fiber. Analysis of mass transfer in dialyers (cross current & cocurrent flow), regeneration of dialysate, membrane configuration, wearable artificial kidney machine, separation of antigens from blood in ESRD patients.

Artificial Heart-lung Machine: Brief of lungs gaseous exchange / transport, artificial heart-lung devices.

Oxygenators: bubble, film oxygenators and membrane oxygenators. Gas flow rate and area for membrane oxygenators. Liver support system, artificial pancreas, blood and skin.

Audiometry: air conduction, bone conduction, masking, functional diagram of an audiometer.

Hearing aids: different types, receiver amplifiers. Opthalmoscope, retinoscope, I.A.B.P principle and application.

SKILL MAPPING

No. Course Learning Outcome		PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to apply the factors and parameters influencing blood flow			3									
CO2	Be able to understand the mechanism of dialysis of kidney, gas exchange in lungs, and sound conduction in ear	3											
CO3	Be able to analyze the working mechanism of artificial kidney, artificial heart-lung machine, and hearing aids			3									
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.			3						3			2

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	42				
Practical / Tutorial / Studio	-				
Student-Centred Learning	-				
Self-Directed Learning					
Non-face-to-face learning	42				
Revision of the previous and (or) subsequent lecture at home	21				
Preparation for final examination	21				
Formal Assessment					
Continuous Assessment	2				
Final Examination	3				
Total	131				

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Motivation and course introduction	
Lecture 1	Motivation course	
Lecture 2	Introduction to Artificial Organs	
Lecture 3	Biomaterials used and the body's response to them	
2	Properties of blood	CT – 1 and Midterm,
Lecture 4	Rheological properties of blood	Final
Lecture 5	Blood viscosity variation: effect of shear rate and hematocrit	
Lecture 6	Blood viscosity variation: effect of temperature and protein	
	contents	
3	Properties of blood continued	
Lecture 7	Casson equation	
Lecture 8	flow properties of blood through the blood vessels	
Lecture 9	problems associated with extracorporeal blood flow	

1		ered by BME Department
4	Artificial Kidney	
Lecture 10	Brief of kidney filtration	
Lecture 11	basic methods of artificial waste removal and hemodialysis	
Lecture 12	equation for artificial kidney and middle molecule hypothesis	
5	Hemodialysers	
Lecture 13	Flat plate type	
Lecture 14	Coil type	
Lecture 15	Hollow fiber type	Midterm, Final
6	Hemodialysers continued	Whater in, Pinar
Lecture 16	Analysis of mass transfer in dialysers: cross current flow	
Lecture 17	Analysis of mass transfer in dialysers: concurrent flow	
Lecture 18	regeneration of dialysate	
7	Hemodialysers	
Lecture 19	membrane configuration	
Lecture 20	wearable artificial kidney machine	
Lecture 21	separation of antigens from blood in ESRD patients	
	MIDTERM	
8	Artificial Heart-lung Machine	
Lecture 22	Brief of lungs gaseous exchange / transport	
Lecture 23	Artificial heart-lung devices	
Lecture 24	Artificial heart-lung devices	
9	Oxygenators	
Lecture 25	Artificial heart-lung devices	
Lecture 26	Bubble oxygenators	CT – 2, FINAL
Lecture 27	Film oxygenators	
10	Oxygenators continued	
Lecture 28	Membrane oxygenators	
Lecture 29	Membrane oxygenators	
Lecture 30	Gas flow rate and area for membrane oxygenators	
11	Artificial liver, pancreas, blood, and skin	
Lecture 31	Liver support system	
Lecture 32	Artificial pancreas	
Lecture 33	Artificial blood and skin	
12	Audiometry	
Lecture 34	Air conduction and bone conduction	
Lecture 35	Masking	
Lecture 36	Functional diagram of an audiometer	CT – 3, FINAL
13	Hearing aids	
Lecture 37	Types of hearing aids	
Lecture 38	Types of hearing aids	
Lecture 39	Receiver amplifiers	
14	Optical diagnosis and I.A.B.P.	
Lecture 40	Opthalmoscope and Retinoscope	
Lecture 41	I.A.B.P principle and application	
Lecture 42	I.A.B.P principle and application	
	FINAL EXAMINATION	

ASSESSMEN	NT STRATEGY			
Comp	oonents	Grading	СО	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3	C2. C3, C4
Assessment (40%)	Class Participation	5%	CO3	C4
	Midterm	15%	CO1, CO2	C2, C3
			CO 1	C3
Final Exam		60%	CO 2	C2
			CO 3	C4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Artificial Organs (Volume 4 of Synthesis lectures on biomedical engineering) by Gerald E. Miller, Morgan & Claypool Publishers, 2006.
- 2. Biomedical Engineering and Design Handbook Volume 2 by Myer Kutz, the McGraw-Hill Companies, Inc, 2009.

REFERENCE BOOKS

3. Biomedical Engineering Handbook volume 2 by Joseph D. Bronzino, Springer Science & Business Media, 2000.

REFERENCE SITE

_

6.2.2.4 BME 425 Bioinformatics

COURSE INFORMATION					
			: 3.00		
Course Code Course Title	: BME 425 : Bioinformatics	Lecture Contact Hours Credit Hours	: 3.00		

PRE-REQUISITE

BME 301: Statistics and Numerical methods for Biomedical Engineers

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course introduces students to basic concepts of molecular biology including the central dogma of biology, DNA replication, transcription, translation, and nucleic acid and protein analytical tools. Introduction to basic bioinformatics algorithms for pair-wise and multiple sequence alignment, statistical significance testing, Bayesian theorem, predictive modeling and phylogenetic analysis is covered. Students will also learn to use currently existing database retrieval systems and online bioinformatics tools through in-class exercises and assignments.

OBJECTIVE

- 1. Be able to understand the basic concepts of molecular biology and biological sequences that are routinely used in bioinformatics
- 2. Be able to recreate and construct basic search and alignment algorithms used in bioinformatics
- 3. Be able to apply and use currently existing sequence databases and bioinformatics tools
- 4. Be able to analyze and conduct phylogenetic based algorithm in ancestral studies

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the basic concepts of molecular biology and biological sequences that are routinely used in bioinformatics	C2	1	-	-	1	T, MID
CO2	Be able to recreate and construct basic search and alignment algorithms used in bioinformatics	С6	2,4	1	1	1, 2	T, MID, F
СОЗ	Be able to apply and use currently existing sequence databases and bioinformatics tools	СЗ	1,2	-	1	2	ASG
CO4	Be able to analyze and conduct phylogenetic based algorithm in ancestral studies	C4	1	1	1	2	T,F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create

COURSE CONTENT

The course covers the following modules: molecular genetics, central dogma, gene and sequence analysis techniques, gene sequencing, BLAST, sequence alignment, protein structure visualization, structure analysis, multiple sequence analysis techniques, phylogenetic analysis, online database and bioinformatic tools.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basic concepts of molecular biology and biological sequences that are routinely used in bioinformatics	3											
CO2	Be able to recreate and construct basic search and alignment algorithms used in bioinformatics		3		2								
CO3	Be able to apply and use currently existing sequence databases and bioinformatics tools	3	2										
CO4	Be able to analyze and conduct phylogenetic based algorithm in ancestral studies	3	3										_

TEACHING	LEARNING	STRATEGY
	1717/2017/11/17/1	

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Content	Assessment
1	Motivation and course introduction	
Lecture 1	Motivation course - Need for bioinformatics in biological	
	sequence analysis	
Lecture 2	The central dogma of biology – DNA	
Lecture 3	The central dogma of biology- RNA	CT – 1 and Midterm,
2	Molecular genetics tools and analysis	Final
Lecture 4	Analyzing and sequencing nucleic acids	
Lecture 5	Structure and hierarchy of proteins	
Lecture 6	Proteomics and genomics in bioinformatics	
3	Pairwise alignment and dotplots	
Lecture 7	Biological databases and information retrieval	
Lecture 8	Sequence alignment with dot matrix	
Lecture 9	Alignment visualization with dot matrix tools	
4	Optimal alignment – dynamic programming	
Lecture 10	Dot matrix tools – examples and application	
Lecture 11	Optimal alignment using dynamic programming method – nucleic acids	
Lecture 12	Optimal alignment using dynamic programming method – proteins	
5	Optimal alignment – global and local alignment	
Lecture 13	Global (Needleman-Wunch) and local (Smith-Waterman)	
	alignment techniques	Midterm, Final
Lecture 14	Affine gap penalty models in dynamic programming – use and examples	

Lecture 15	Introduction to statistical significance testing	ered by BME Department
	5	
6	Statistical significance of alignment	
Lecture 16	Statistical significance of global alignment	
Lecture 17	Erdo Renyi theorem	
Lecture 18	Statistical significance of local alignment	
7	Scoring matrices	
Lecture 19	Nucleotide identity scoring matrix	
Lecture 20	BLOSUM matrix	
Lecture 21	Construction of BLOSUM matrix from BLOCKS database	
	MIDTERM	
8	Scoring matrices	
Lecture 22	Accepted point mutation and PAM matrices	
Lecture 23	Constructing PAM matrices	
Lecture 24	Alignment visualization and scoring exercise	
9	Biological Sequence Retrieval	
Lecture 25	FASTA and BLAST algorithm	
Lecture 26	Different modes of sequence searches using NCBI-BLAST tool	CT – 2, FINAL
	(PSI-BLAST, PHI-BLAST)	
Lecture 27	Sequence retrieval and analysis using BLAST	
10	Multiple sequence alignment	
Lecture 28	PSI-BLAST, KlustalW and progressive alignment	
Lecture 29	Multiple sequence alignment with KlustalW	
Lecture 30	Position specific scoring matrices, PROSITE database	
11	Introduction to phylogenetics	
Lecture 31	Introduction to phylogenetics	
Lecture 32	Drawing tree diagrams	
Lecture 33	Introduction to tree building methods	
12	Constructing phylogenetics tree 1	CT – 3, FINAL
Lecture 34	Stepwise clustering 1	
Lecture 35	Stepwise clustering 2	
Lecture 36	Fitch Margoliash method	
13	Constructing phylogenetics tree 2	
Lecture 37	Maximum parsimony and maximum likelihood method	
Lecture 38	Ancestral studies using phylogeny	
Lecture 39	Phylogenetic tools and software based exercise	
14	Gene prediction	
Lecture 40	Modeling genes	FINAL
Lecture 41	Finding protein coding areas of the gene	
Lecture 42	Revision	
	FINAL EXAMINATION	
ASSESSMENT S	STRATEGY	

Components Grad			CO	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO4	C2, C3, C6
Assessment (40%)	Class Participation/Assignment	5%	CO3	C3
	Midterm	15%	CO1, CO2	C2, C6
			CO 1	C2
	Final Exam		CO 2	C6
rinai Exam		60%	CO 3	C3
			CO 4	C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

REFERENCE BOOKS

- 1. Understanding Bioinformatics, Jeremy Baum (2008), Taylor and Francis, NY, USA
- 2. An Introduction to Bioinformatics Algorithms by Neil C. Jones, Pavel A. Pevzner

REFERENCE BOOKS

- 1. Baxevanis, A.D., and Ouellette, B.F.F. (2005) Bioinformatics -A Practical Guide to the Analysis of Genes and Proteins, 3rd ed., John Wiley and Sons, NY
- 2. Mount, D.W. (2004) Bioinformatics: Sequence and Genome Analysis, 2nd ed., Cold Spring Harbor Lab. Press, N.Y.
- 3. Online sequence databases and bioinformatic tools

REFERENCE SITE

_

6.2.3 Group-III (Imaging)

6.2.3.1 BME 427 Advanced Biomedical Signal Processing

COURSE INFORMATION							
Course Code Course Title	: BME 427 : Advanced Biomedical Signal Processing	Lecture Contact Hours Credit Hours	: 3.00 : 3.00				

PRE-REQUISITE

BME 305: Biomedical Signal Processing

MATH 231: Complex Variable and Linear Algebra

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is designed to provide strong foundation of theoretical knowledge in advanced signal processing techniques to implement them in complex biosignal analysis for solving associated real-life problems.

OBJECTIVE

- 1. To provide the knowledge about the different advanced signal processing techniques for non-stationary signals
- 2. To prepare the students skilled to reveal the complex meaning of different biosignals and systems.

COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods	
CO1	Be able to understand the steps of different advanced signal processing techniques	C2	1	1	-	1,3	T, F	
CO2	Be able to apply the advanced signal processing techniques to different biosignals appropriately	С3	1	1,3	-	1,2	MID, F	
CO3	Be able to make decision about problem based signal processing techniques	СЗ	1	1	-	1,2	T, F	
CO4	Be able to analyze different biosignals and systems to reveal the complex meaning of different biosignals and systems	C4	2	1,2	-	1,3	T, F	
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.	C6	3,9,12	5	5	5	PR, Pr, R	
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG –								
Assignment; Pr – Presentation; R - Report; F – Final Exam)								

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create

COURSE CONTENT

Biomedical signal recording system: Review on Biomedical signals and system, spectral characteristics of biomedical signals, bio-sensors and acquisition of biomedical signals, sampling, quantization and encoding, multirate data acquisition systems, compressed sensing; time-domain analysis of biomedical signals; **Statistical analysis of biosignals:** Biomedical signals using higher order higher order statistics (HOS), Principal component analysis (PCA), Independent component analysis (ICA), Common spatial pattern (CSP), Singular value decomposition (SVD), Singular spectrum analysis (SSA) etc. Estimation of power spectrum and correlation analysis.

Time-frequency domain analysis of biomedical signals: short-time Fourier transform, wavelet transform, empirical mode decomposition; Digital filters for processing biomedical signals: different types of artifacts and noise, filters in time-domain and frequency-domain, time-frequency domain-based filtering; Event detection and feature extraction: signal segmentation, envelope extraction, temporal and spectral features, statistical features, pattern classification using neural networks and support vector machine; Modeling biomedical systems: autoregressive model, pole-zero and spectral modeling, Linear mixture modelling, applications of biomedical systems.

SKILL MAPPING

No	No. Course Learning Outcome 1 2 3 4 5		PROGRAM OUTCOMES (PO)										
No.			5	6	7	8	9	10	11	12			
CO1	Be able to understand the steps of different advanced signal processing techniques	2											
CO2	Be able to apply the advanced signal processing techniques to different biosignals appropriately	2											
СОЗ	Be able to make decision about problem based signal processing techniques	3											
CO4	Be able to analyze different biosignals and systems to reveal the complex meaning of different biosignals and systems	3											
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.			3						3			3

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

Week	Topic	Assessment					
1	Biomedical signal recording system	rissessificate					
Lecture 1	Review on Biomedical signals and system	-					
Lecture 2	Spectral characteristics of biomedical signals	-					
Lecture 3	ecture 3 Bio-sensors and acquisition of biomedical signals						
2	Biomedical signal recording system	CT – 1, Final					
Lecture 4	Sampling, quantization and encoding	-					
Lecture 5	Multi-rate data acquisition systems, compressed sensing	-					
Lecture 6	time-domain analysis of biomedical signals	-					
3	Statistical analysis of biosignals	-					
Lecture 7	Statistical analysis of biosignals	-					
Lecture 8	Biomedical signals using higher-order statistics (HOS)						
Lecture 9	Diomedical signals using ingher order statistics (1105)						
4	Linear Transformation						
Lecture 10	Principal component analysis (PCA)	-					
Lecture 11	Principal component analysis (PCA)	-					
Lecture 12	Independent component analysis (ICA)	-					
5	Linear Transformation	-					
Lecture 13	Independent component analysis (ICA)	-					
Lecture 14	Common spatial pattern (CSP)	-					
Lecture 15	Common spatial pattern (CSP)	-					
6	Linear Transformation	Midterm, Final					
Lecture 16	Singular value decomposition (SVD)						
Lecture 17	Singular value decomposition (SVD) Singular value decomposition (SVD)	-					
Lecture 18	Singular varue decomposition (SVD) Singular spectrum analysis (SSA)	-					
7	Linear Transformation	_					
Lecture 19	Singular spectrum analysis (SSA)	-					
Lecture 20	Estimation of power spectrum and correlation analysis	_					
Lecture 21	Estimation of power spectrum and correlation analysis Estimation of power spectrum and correlation analysis	_					
Lecture 21							
0	Midterm Break						
8	Time-frequency domain analysis of biomedical signals:	-					
Lecture 22	Short-time Fourier transform	_					
Lecture 23	Short-time Fourier transform	_					
Lecture 24	Wavelet transform	_					
9	Time-frequency domain analysis of biomedical signals	-					
Lecture 25	Wavelet transform						
Lecture 26	Empirical mode decomposition	_ C1 - 2, Final					
Lecture 27	Empirical mode decomposition	_					
10	Digital filters for processing biomedical signals	_					
Lecture 28	Different types of artifacts and noise	_					
Lecture 29	Filters in time-domain and frequency-domain	_					
Lecture 30	Time-frequency domain-based filtering						
11	Event detection and feature extraction						
Lecture 31	Signal segmentation						
T . 22	1 — .	i e					

Envelope extraction

Lecture 32

Lecture 33	Temporal and spectral features	
12	Event detection and feature extraction	
Lecture 34	Statistical features	
Lecture 35	Pattern classification using neural networks	
Lecture 36	Pattern classification using support vector machine	CT – 3, FINAL
13	Modeling biomedical systems	
Lecture 37	Autoregressive model	
Lecture 38	Pole-zero and spectral modeling	
Lecture 39	Pole-zero and spectral modeling	FINAL
14	Biomedical Signal Processing	FINAL
Lecture 40	Linear mixture modelling	
Lecture 41	Applications of biomedical systems	
Lecture 42	Applications of biomedical systems	

ASSESSMENT STRATEGY

Components		Cuadina	СО	Blooms Taxonomy
		Grading		
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4
(40%)	Class Participation	5%	CO3	C2
	Midterm	15%	CO2	C3
			CO 1	C2
Final	Final Exam		CO 2	C3
rinai Exam		60%	CO 3	C2
			CO 4	C4
Total	Total Marks			

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Emmanuel Ifeachor and Barrie Jervis, "Digital Signal Processing: A Practical Approach," Second Edition, Pearson Publications, 2002.
- 2. Amine Nait-Ali, "Advanced Biosignal Processing," Springer, 2009.

REFERENCE BOOKS

- 3. K J Blinowska and J Zygierewicz, "Practical Biomedical Signal Analysis Using MATLAB," CRC Press, 2012.
- 4. S. R. Devasahayam, "Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling," Second Edition, Springer Publication, 2013.

REFERENCE SITE

6.2.3.2 BME 429 Nuclear Medicine

COURSE INFORMATION							
			: 3.00				
Course Code	: BME 429	Lecture Contact Hours	: 3.00				
Course Title	: Nuclear Medicine	Credit Hours					

PRE-REQUISITE

PHY 125 & 103: Physics I and II BME 307 – Medical Imaging

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The course introduces the students to the physics of radionucleotide and radionucleotide decay, radionucleotide generators and detection. Emphasis is given on medical cyclotrons for producing radioisotopes used in molecular imaging. Radionucleotide detection using Gamma camera and other related method is also covered. Few key nuclear imaging methods, namely, SPECT, SPECT-CT, PET, PET-CT are covered in sufficient details.

OBJECTIVE

- 1. Be able to understand the basic concepts of radionucleotide decay and radioactive equilibrium
- 2. Be able to **describe** the physics and working principles of instruments used in nuclear medicine
- 3. Be able to apply fundamental concepts learnt in the course to address issues in nuclear imaging
- 4. Be able to undertake quality control and testing of instruments used in nuclear medicine

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to understand the basic concepts of radionucleotide decay and radioactive equilibrium	C2	1	-	-	1	T, MID
CO2	Be able to describe the physics and working principles of instruments used in nuclear medicine	C1, C2	1	1	1	1	T, MID, F
СОЗ	Be able to apply fundamental concepts learnt in the course to address issues in nuclear imaging	C3, C4	2	-	1	2	ASG
CO4	Be able to undertake quality control and testing of instruments used in nuclear medicine	C3, C4	2	1	1	2	T,F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 - Create

COURSE CONTENT

Planar Scintigraphy: Introduction of Nuclear medicine: Planar scintigraphy, Radioactivity and radiotracer halflife, Properties of radiotracers for nuclear medicine, The technetium generator, The distribution of technetiumbased radiotracers within the body, The gamma camera, Image characteristics, Clinical applications of planar scintigraphy

SPECT and PET/CT: Single photon emission computed tomography (SPECT), Data processing in SPECT, SPECT/CT, Clinical applications of SPECT and SPECT/CT, Positron emission tomography (PET), Radiotracers used for PET/CT, Handling and Operation of PET/CT, Two-dimensional and three-dimensional PET imaging, PET/CT, Data processing in PET/CT, Image characteristics, Time-of flight PET, Clinical applications of PET/CT.

SKILL MAPPING

No. Course Learning Outcome		PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to understand the basic concepts of radionucleotide decay and radioactive equilibrium	3											
CO2	Be able to describe the physics and working principles of instruments used in nuclear medicine	3											
CO3	Be able to apply fundamental concepts learnt in the course to address issues in nuclear imaging		3										
CO4	Be able to undertake quality control and testing of instruments used in nuclear medicine		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Content	Assessment
1	Motivation and course introduction	

Lecture 1	Introduction and Motivation	ew of BIND Beparement
Lecture 2	Overview on Medical Imaging	
Lecture 3	Introduction and history of nuclear medicine	
2	Nuclear Medicine	CT – 1 and Midterm,
Lecture 4	Radionucleotide decay and the fundamental decay equation	Final
Lecture 5	Photon beam attenuation	
Lecture 6	Beams and procedures used in nuclear medicine and	
	radiopharmaceuticals	
3	Radioactive equilibrium	
Lecture 7	Radioactive equilibrium – decay and transmutation	
Lecture 8	Activity and half-life of radionucleotides, carrier free specific	
	activity	
Lecture 9	Radioactivity in equilibrium – Bateman equations, secular and	
	transient equilibrium	
4	Radionucleotide production	
Lecture 10	Methods for producting radionucleotides	
Lecture 11	Nuclear reactor, nuclear fission, neutron activated produced	
	radionucleotides	
Lecture 12	Accelerator produced radionucleotides, radioisotopes,	
	conventional vs nuclear imaging	
5	Radionucleotide generators	
Lecture 13	Ideal nuclear generators and construction of nuclear generators	
Lecture 14	Activity of radionucleotides inside generators	
Lecture 15	Essential steps in accelerator-based radionucleotide production	
6	Radionucleotide production rates and cyclotron	
Lecture 16	Production rates and cross-sections	
Lecture 17	Proton generation rate, medical cyclotron	Midtorm Final
Lecture 18	Basic working principles and construction method of a simple	Midterm, Final
	cyclotron	
7	Cyclotron - continued	
Lecture 19	Output energy, heat deposition, stopping power (Bethe	
	Equation)	
Lecture 20	Maintenance of cyclotron	
Lecture 21	Revision	
	MIDTERM	
8		
Lecture 22	Gamma Camera	
Lecture 23	Gamma Camera – Introduction and working principles	
Lecture 24	Collimator, collimator efficiency and collimator resolution,	
	collimator sensitivity	
9	Scintillator, pre-amplifier, amplifier	
Lecture 25	Gamma Camera QC	CT – 2, FINAL
Lecture 26	Photomultiplier tubes and other components of Gamma Camera	
Lecture 27	Energy calculations and Compton Band	
10	Pulse height spectrometry	
Lecture 28	Gamma Camera QC 2	

	Course Offer	ea by BME Department				
Lecture 29	Image non-uniformity and corrections. Image non-linearity,	_				
	uniformity profile					
Lecture 30	Gamma Camera tuning, intrinsic uniformity					
11	Design and Performance characteristics of Parallel Hole					
	Collimators, septal thickness					
Lecture 31	Radiation protection					
Lecture 32	Types of radiation detectors and comparison with gamma					
	camera	CT – 3, FINAL				
Lecture 33	Occupational dose limits					
12	SPECT/SPECT CT imaging					
Lecture 34	Calculations and examples of dosage and limits					
Lecture 35	Principles and workflow of SPECT imaging					
Lecture 36	Principles and working principles of SPECT-CT imaging					
13	PET/PET CT imaging					
Lecture 37	Principles and workflow of PET imaging					
Lecture 38	Principles and workflow of PET-CT imaging					
Lecture 39	Image construction and processing of PET-CT images					
14	Non imaging devices					
Lecture 40	Dose calibrators, QC of dose calibrators, thyroid uptake probe	FINAL				
Lecture 41	Standard uptake value and noise equivalent count rate					
Lecture 42	Revision					
	FINAL EXAMINATION					

ASSESSMENT STRATEGY

Components Gr		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C1, C2, C3, C4
Assessment (40%) Participa	Class Participation/Assignment	5%	CO1, CO2, CO3, CO4	C1, C2, C3, C4
	Midterm	15%	CO1, CO2	C1, C2
	Final Exam		CO 1 CO 2	C1 C1, C2
r mai Exam		60%	CO 3	C3. C4
			CO 4	C3, C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. The Essential Physics of Medical Imaging by J.T. Bushberg, J.A. Seibert
- 2. Physics and Radiobiology of Nuclear Medicine by Gopal B. Saha

REFERENCE BOOKS

1. Nuclear Medicine Physics: A Handbook for Teachers and Students, International atomic energy agency Vienna, 2014

REFERENCE SITE

D 12

6.2.3.3 BME 431 Biomedical Data Science

COURSE INFORMATION						
			: 3.00			
Course Code Course Title	: BME 431 : Biomedical Data Science	Lecture Contact Hours Credit Hours	: 3.00			

PRE-REQUISITE

Course Code: CSE 291

Course Title: Computer Programming

Course Code: CSE 292

Course Title: Computer Programming Lab

Course Code: BME 301

Course Title: Statistics and Numerical Methods for Biomedical Engineers

Course Code: BME 313

Course Title: Biomedical Image Processing

Course Code: BME 314

Course Title: Biomedical Image Processing Sessional

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The goal of this course is to expose students to the field of data science and computer vision. The course will provide students a solid background of machine learning and deep learning, this will enable students to solve various problems in the domain of medical imaging, bioinformatics, medical device development and biomedical implants using Artificial Intelligence. Student will undergo graded coding assignments, which will enable them to implement different aspects of machine learning and deep learning in solving problems of various domains.

OBJECTIVE

- 1. To identify and understand fundamentals of artificial intelligence.
- To apply the fundamental concepts of machine learning and deep learning in the domain of biomedical data science.
- 3. To analyze the various machine learning algorithms.
- 4. To evaluate various deep learning architectures.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to identify and understand fundamentals of fundamentals of artificial intelligence	C1, C2	1	1	-	3	T, F
CO2	Be able to apply the fundamental concepts of machine learning and deep learning in the domain of biomedical data science.	С3	2	1,3	-	3	T, F
CO3	Be able to analyze the various machine learning algorithms.	C4	2	1	-	5	MID, F
CO4	Be able to evaluate various deep learning architectures.	C5	3	1,3	-	5	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q - Quiz; ASG -							
Assignment; Pr – Presentation; R - Report; F – Final Exam)							
C1 - Remember C2 - Understand C3 - Apply C4 - Analyze C5 - Evaluate C6 - Create							

COURSE CONTENT

Introduction to Python for Data Science: Data Types, Loops, Functions, Reading and Writing Files, Object Oriented programming, Threading, Multiprocess, Libraries: numpy, matplotlib, Pandas, OpenCV, Sklearn, Tensorflow, sea born. Dealing with null values. Pattern Recognition: Data clustering, Supervised Learning, Unsupervised Learning, Introduction to Fuzzy logic. Machine Learning: Architecture (Feature Extraction, Training, Testing, Validation), Semi Supervised Learning, Linear Regression, Logistic Regression, kNN, Decision Tree, Random Forest, Naïve Bayes Classifier, Support vector machine, ANN, Over Fitting and Regularization. Deep Learning: Architecture, Activation Functions, Perceptrons, Multi-Layer Perceptrons, CNN, RNN. LSTM, Data Augmentations, Transfer Learning, Self attention, Encoder-Decoder, Introduction to different pertained network.

SKILL MAPPING

No. Course Learning Outcome –		PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Be able to identify and understand												
CO1	fundamentals of fundamentals of artificial	3											
	intelligence												
	Be able to apply the fundamental concepts												
CO2	of machine learning and deep learning in		3										
	the domain of biomedical data science.												
CO3	Be able to analyze the various machine		3										
CO3	learning algorithms.		3										
CO4	Be able to evaluate various deep learning			3									
CO4	architectures.			3									

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Торіс	Assessment
1	Motivation and course introduction	
Lecture 1	Introduction to Artificial Intelligence	
Lecture 2	Artificial Intelligence in Healthcare	
Lecture 3	Artificial Intelligence in Healthcare (continue)	
2	Basic Python Programming	CT – 1, Final
Lecture 4	Data Types, Loops, Functions, Reading and Writing Files	
Lecture 5	Object Oriented programming	
Lecture 6	Threading, Multiprocess, Libraries: numpy, matplotlib	
3	Python Programming for Data Science And computer Vision	
Lecture 7	Introduction to Pandas, Introduction to OpenCV	
Lecture 8	Introduction to Sklearn	
Lecture 9	Introduction to Tensorflow	
4	Basic Data Processing and Data Visualization	
Lecture 10	Data Preprocessing: Dealing with null values, Image resizing,	
	introduction to dimensionality reduction	
Lecture 11	Introduction to sea born: Heat Map, Box Plotm Scatter Plot, 3D	
	plot, Linear Plot, Line Plot	
Lecture 12	Introduction to sea born: Swarmplot, barplot, Distribution Plot,	
	Regression Plot	
5	Introduction to Pattern Recognition	
Lecture 13	Supervised Learning, Unsupervised Learning, Semi Supervised	Midterm, Final
	Learning	
Lecture 14	Data Clustering	
Lecture 15	Fundamental Concepts of Fuzzy Systems	
6	Machine Learning Algorithms 1	
Lecture 16	Linear Regression	
Lecture 17	Logistic Regression	
Lecture 18	Logistic Regression (Continue)	
7	Machine Learning Algorithms 2	
Lecture 19	KNN	
Lecture 20	Decision Tree, Random Forest, Naïve Bayes Classifier	
Lecture 21	Support Vector Machine	
	Midterm Break	
8	Machine Learning Advanced Concepts	
Lecture 22	Machine Learning Architecture (Training, Testing and	
Lastina 22	Validation)	
Lecture 23	Over Fitting and Regularization	
Lecture 24	Artificial Neural Networks	
9	Introduction to Neural Networks	CT – 2, Final
Lecture 25	Perceptron, Introduction to Activation Functions, Different	CI - 2, FIIIAI
	Activation Functions	

	Course Offer	ea by BME Department
Lecture 26	Multilayer Perceptron	
Lecture 27	Multilayer Perceptron (Continue)	
10	Different Neural Network Architectures and Sequential	
	Models 1	
Lecture 28	Introduction to Convolution Neural Networks, Basic Concepts of	
	CNN: Edge Detection, Padding, CNN Layers, Pooling Layer	
Lecture 29	Different Types of CNN: Resnet	
Lecture 30	Different Types of CNN: Inception	
11	Different Neural Network Architectures and Sequential	
	Models 2	
Lecture 31	Different Types of CNN: ImageNet	
Lecture 32	Different Types of CNN: Yolo	
Lecture 33	Data Augmentation	
12	Different Neural Network Architectures and Sequential	
	Models 3	
Lecture 34	Introduction to Recurrent Neural Networks and basic principles,	CT – 3, FINAL
	Sequential processing with RNN, Bi Directional RNN	
Lecture 35	Introduction to LSTM and basic principles,	
Lecture 36	Sequential Processing with LSTM, Existing LSTM libraries	
13	Advance Architectures in Neural Network	
Lecture 37	Transfer Learning	
Lecture 38	Self Attention, Encoder-Decoder Architecture	
Lecture 39	Transformer Model	
14	Computer Vision in Healthcare	FINAL
Lecture 40	Radiology Diagnostic Scans and Nuclear Medicine Diagnostic	
	Scan	
Lecture 41	Virtual Reality in Healthcare	
Lecture 42	Recent works in Biomedical DataScience	

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy
Comp	onents	Grading		,
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO1, CO2, CO3, CO4	C1,C2,C3, C4, C5
(40%)	Class Participation	5%	CO1	C1,C2
	Midterm	15%	CO1,CO2, CO3	C1,C2,C3, C4
			CO 1	C1, C2
Final	Evom	60%	CO 2	C3
Fillal	Final Exam		CO 3	C4
			CO 4	C5
Total	Total Marks			

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1.Pattern Recognition and Machine Learning, bishop, C. (2006), Berlin: Springer-Verlag
- 2. Deep Learning with Python, Francois Chollet, 2017, Manning Publication

REFERENCE BOOKS

- 1. Speech and Language Processing, Dan Jurafsky and James H. Martin, 2019, Pearson
- 2. Head First Python, Paul Barry, 2010, O'Reilly

REFERENCE SITE

--

6.2.4 Group-IV (Biomechanics and Rehabilitation Engineering)

6.2.4.1 BME 433 Applied Biofluid Mechanics

COURSE INFORMATION							
			: 3.00				
Course Code Course Title	: BME 433 :Applied Biofluid Mechanics	Lecture Contact Hours Credit Hours	: 3.00				

PRE-REQUISITE

Course Code: BME 203

Course Title: Biofluid Mechanics and Heat Transfer

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course will provide a discussion of the fluid mechanical principles underlying the operation of physiologic systems, including the heart and circulatory system and the lungs and pulmonary system. Topics to be covered will include blood rheology, mechanics of circulation, arterial wave propagation, oscillatory air and liquid flows and transport of dissolved or suspended solutes. Emphasis will be placed on developing quantitative understanding of blood flow through the arterial system and air flow through the pulmonary system, both in health and in disease.

OBJECTIVE

This course aims to develop student's basic knowledge of fluid mechanics and biofluids to an advance level. The student will gain the understanding of the underlying assumptions and models that are applied when solving fluid mechanics problems. Based on the assumptions made, the student will learn to differentiate between the various approaches and solutions applied to a wide variety of fluid mechanics problems related to physiological processes, medical devices, and laboratory setups as used for testing and measuring. A significant objective is to reinforce the student's prior knowledge in calculus, differential equations, and engineering as it applies to fluid mechanics. Computational Fluid Dynamics (CFD) and MATLAB will be introduced to emphasize Computer Aided Engineering (CAE).

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to gain fundamental understanding of the governing physics behind the pulsatile flow and cardiovascular system.	C2	1	1	-	1	T, F
CO2	Be able to formulate the solution related to fluid mechanics problems in human body system and solve by engineering concepts.	С6	3	1,3	1	1,3	T, F
СОЗ	Be able to evaluate artificial organs and devices that are exposed, or work based the flow inside human body.	C5	4	1	-	1	MID, F
CO4	Be able to analyze biofluid mechanics problems in human body to improve healthcare.	C4	2	1	-	1,3	T, F
CO5	Be able to critically review recent articles from the scientific literature and identify	C6	3,9,12	5	5	5	PR, Pr, R

Course Offered by BME Department

	relevant are	eas of research opportu	nities.								
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG –											
Assign	Assignment; Pr – Presentation; R - Report; F – Final Exam)										
C1 - Re	emember	C2 - Understand	C3 - Apply	C4 - An	alyze	C5 - Evalu	ate (C6 - Create			
COLID	COMPANY										

COURSE CONTENT

Review of basic fluid mechanics, Biorheology: Constitutive equations, Non-Newtonian fluid models; Circulatory biofluid mechanics: Circulatory system physiology, Function of circulatory system, circulation in heart, blood and lymphatic vessels, Blood properties, Hemorheology; Models for blood flow: Steady flow in tubes, Pulsatile flow in a rigid tube, Pulsatile flow in an elastic tube, Wave propagation in elastic tubes; Applications in circulatory system: Blood flow dynamics in arteries and veins, Flow in specific vessels and arteries, Heart-valve hemodynamic, Diseases related to obstruction of blood flow: Stroke, Heart injury; Synovial fluid in joints: Synovial joints physiology, Function of synovial fluid, Diseases, Synovial fluid properties and rheology, Lubrication theory, Application for synovial fluid flow (Arthritis), Knee and Hip injury; Biofluid dynamics of the human brain: Cerebrospinal fluid, Cerebral blood flow, Blood brain barrier, Brain diseases; Respiratory biofluid mechanics: Respiratory system physiology Alveolar ventilation, Air flow in the lungs, Mechanics of breathing, Gas exchange and transport; Flow and pressure measurement techniques in human body.

SKILL MAPPING

No.	To. Course Learning Outcome			PROGRAM OUTCOMES (PO)									
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to gain fundamental understanding of the governing physics behind the pulsatile flow and cardiovascular system.	3											
CO2	Be able to formulate the solution related to fluid mechanics problems in human body system and solve by engineering concepts.			2									
CO3	Be able to evaluate artificial organs and devices that are exposed, or work based the flow inside human body.				2								
CO4	Be able to analyze biofluid mechanics problems in human body to improve healthcare.		3										
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.			3						3			2

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21

Course Offered by BME Department

Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Topic	Assessment
1	Overview of Fluid mechanics	
Lecture 1	Review of basic fluid mechanics	
Lecture 2	Biorheology	
Lecture 3	Constitutive equations	
2	2 Biofluid Properties and Circulatory System	
Lecture 4	Non-Newtonian fluid models	
Lecture 5	Circulatory system physiology	
Lecture 6	Function of circulatory system	
3	Circulation and it's Function	
Lecture 7	Function of circulatory system	
Lecture 8	circulation in heart, blood and lymphatic vessels	
Lecture 9	Blood properties	
4	Hemorheology and Pulsatile Flow	
Lecture 10	Hemorheology	
Lecture 11	Models for blood flow: Steady and pulsatile flow in rigid tube	
Lecture 12	Pulsatile flow in an elastic tube	
5	Wave Propagation and Circulatory System Applications	
Lecture 13	Wave propagation in rigid body	
Lecture 14	Wave propagation in elastic body	
Lecture 15	Application of wave propagation in circulatory system	
6	Blood Flow Dynamics and Heart Valve	Midterm, Final
Lecture 16	Blood flow dynamics in arteries and veins	
Lecture 17	Flow in specific vessels and arteries (Coronary artery disease)	
Lecture 18	Flow in specific vessels and arteries (Carotid artery disease)	
7	Blood Flow Dynamics and Heart Valve	
Lecture 19	Overview of heart valves and their functions	
Lecture 20	Heart-valve hemodynamic	
Lecture 21	Heart valve disease and flow analysis for analyzing heart valve	
	Midterm Break	
8	Disease Related to Blood Flow	
Lecture 22	Overview of diseases related to blood flow obstruction	
Lecture 23	Obstructive coronary artery diseases (Stenosis)	
Lecture 24	Tortuosity and Eccentricity in coronary artery disease	
	progression	
9	Disease Related to Blood Flow	
Lecture 25	Overview and causes of stroke	CT – 2, Final

Lecture 26	Obstructive blood flow related to stroke (Carotid artery	
	stenosis)	
Lecture 27	Obstructive blood flow related to stroke (Carotid artery	
	aneurysm)	
10	Synovial Fluid in Joints	
Lecture 28	Synovial joints physiology	
Lecture 29	Function and importance of fluid flow in synovial fluid	
Lecture 30	Disease related synovial fluid	
11	Synovial Fluid in Joints	
Lecture 31	Synovial fluid properties and rheology	
Lecture 32	Lubrication theory, Application for synovial fluid flow	
Lecture 33	Arthritis, Knee and Hip Injury	
12	Brain Fluid Dynamics	
Lecture 34	Cerebrospinal fluid and cerebral blood flow dynamics	
Lecture 35	Blood brain barrier	
Lecture 36	Biofluid mechanics involved in brain disease	CT – 3, FINAL
13	Respiratory System Fluid Dynamics	
Lecture 37	Alveolar ventilation and air flow in lungs	
Lecture 38	Mechanics of breathings	
Lecture 39	Gas exchange and transport principles	
14	Flow Measurement Techniques	FINAL
Lecture 40	Overview of different flow measurement techniques in human	
	body	
Lecture 41	Ultrasonic and Electromagnetic flow measurement techniques	
Lecture 42	Review	

ASSESSMENT STRATEGY

Components Gr		Grading	CO	Blooms Taxonomy
Com		Grading		
	Class Test/			
	Assignment	20%	CO1, CO2, CO4	C2, C6, C4
Continuous	1-3		, ,	, ,
Assessment	-			
	Class	50/	CO2	C5
(40%)	Participation	5%	CO3	C5
	Midterm	15%	CO3	C5
			CO 1	C2
Final	final Exam 60%		CO 2	C6
Fillal	LXaIII	0070	CO 3	C5
			CO 4	C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. Applied Biofluid Mechanics, Lee Waite and Jerry Fine. ISBN -10: 0-07-147217-7

REFERENCE BOOKS

1. A Brief Introduction to Fluid Mechanics, Young, Munson, and Okiishi; Fifth Edition

REFERENCE SITE

6.2.4.2 BME 435 Biomedical Implants and Braces

COURSE INFORMATION											
			: 3.00								
Course Code Course Title	: BME 435 : Biomedical Implants	Lecture Contact Hours Credit Hours	: 3.00								

PRE-REQUISITE

--

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials, surface modification, corrosion and tribocorrosion aspects of implants and clinical concern etc.

OBJECTIVE

- 1. To familiarize students with various types of implants and their properties.
- 2. To introduce with different biomaterials involved in implant design.
- 3. To analyze different design consideration and standard required for implant designing and fabrication.

COURSE OUTCOMES & GENERIC SKILLS

CO1 Be able to explain principles of implant modelling Be able to apply the knowledge of biomaterial selection and design consideration for implant designing C2 1 1 1 - 1 C3 1 1 - 1	Assessment Methods
CO2 biomaterial selection and design C3 1,3 1 - 1	T, F
	T, F
Be able to analyze possible failure mechanism that can affect the performance and longevity of the implant C4 2,8 1 - 1,3	MID, F
Be able to evaluate implant monitoring and different diagnostic techniques involved in implant monitoring CO4 different diagnostic techniques involved in implant monitoring	T, F
Be able to critically review recent articles CO5 from the scientific literature and identify relevant areas of research opportunities. CCB Correlar Problems CA Correlar Activities KB Knowledge Profile T. Test PB. Project O.	PR, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

CI - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Clinical Problems Requiring Implants for Solution: introduction to irreversibility of injury, overview of regeneration, problems and recommended implants for solution. Principles of Implant design; Missing Organ and Its Replacement: transplantation, autografting, permanent prosthesis, stem cells, in vitro synthesis, induced organ regeneration. Biomaterial for Implants: types and requirements for ideal implant materials, functional properties, surface characterization and preparation, sterilization. Instruments for Surgical Implantation Procedures; Implants for Bone: clinical problem, materials for bone implants, application and procedure involved in bone implantation. Spinal Implants; Dental and Otologic Implant; Implants for Plastic Surgery: materials and their properties, chin implants, jaw implants and chick implants. Implants for Cardiovascular System: cardiac resynchronization therapy and cardiac assisted devices, pacemaker and implantable cardiac defibrillator. Biocompatibility: Local and Systemic Effects; Degradation of Device: corrosion of Metals, degradation of nonabsorbable and absorbable polymers. Nerve Regeneration: synthesis of nerve fibers, device for nerve stimulation (TENS and EMS). Diagnostic Techniques Available for Implant Monitoring.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to explain principles of implant modelling	3											
CO2	Be able to apply the knowledge of biomaterial selection and design consideration for implant designing	3		2									
CO3	Be able to analyze possible failure mechanism that can affect the performance and longevity of the implant		3						1				
CO4	Be able to evaluate implant monitoring and different diagnostic techniques involved in implant monitoring		3										
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.			3						3			3

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week	Topic	Assessment		
1	Clinical Problems Requiring Implants for Solution			
Lecture 1	Introduction to irreversibility of injury			
Lecture 2	Overview of regeneration: spontaneous and induced			
Lecture 3	Problems and recommended implants for solution			
2	Principles of Implant design	CT – 1, Final		
Lecture 4	Functional performance of the device (mechanical, chemical			
	and attachment vehicle)			
Lecture 5	Effects of the implant on the body			
Lecture 6	Effects of the body on the implant			
3	Missing Organ and Its Replacement			
Lecture 7	Overview of the methods to use for organ replacement			
Lecture 8	Transplantation, Autografting, Permanent prosthesis			
Lecture 9	Stem cells, In vitro synthesis, Induced organ regeneration			
4	Biomaterial for Implants			
Lecture 10	Types and requirements for ideal implant materials			
Lecture 11	Functional properties of the biomaterials (Bulk properties,			
	Surface properties and Chemical Properties)			
Lecture 12	Surface characterization and preparation, Sterilization			
5	Instruments for Surgical Implantation Procedures			
Lecture 13	Classes of instruments by function for surgical implantation			
	procedures			
Lecture 14	Functions of the instruments	Midterm, Final		
Lecture 15	Characteristics and uses of the instruments			
6	Implants for Bone			
Lecture 16	Clinical problems that required bone implant			
Lecture 17	Biomaterial used for bone implants (functional, chemical and			
	mechanical properties)			
Lecture 18	Application and procedure involved in bone implantation			
7	Spinal Implants			
Lecture 19	Types of spinal implants (cages, hooks, plates, pedicle screws,			
	rods, spinal cord stimulator)			
Lecture 20	Material used and their characteristics			
Lecture 21	Usage and benefits of spinal implants			
	Midterm Break			
8				
	Dental Implant			
Lecture 22	Types of dental implants and their usage			
Lecture 23	Characteristics and functions of dental implants			
Lecture 24	Implantation procedure involved in dental surgery			
9	Implants for Plastic Surgery			

Lecture 25	Overview if implants used for plastic surgery	CT – 2, Final
Lecture 26	Materials used in plastic surgery and their properties	
Lecture 27	Chin implants, jaw implants and chick implants	
10	Implants for Cardiovascular System	
Lecture 28	Introduction to implantable cardiac devices	
Lecture 29	Overview of pacemaker and implantable cardiac defibrillator,	
Lecture 30	stent (material and functions), Heart Valves	
	Overview cardiac resynchronization therapy and cardiac assisted devices	
11	Biocompatibility: Local and Systemic Effects	
Lecture 31	Overview of biocompatibility	
Lecture 32	Chemical effect related to biocompatibility	
Lecture 33	Mechanical effect: alteration on strains in surrounding tissue,	
	Electrical and Thermal effects	
12	Degradation of Device	
Lecture 34	Corrosion of Metals	
Lecture 35	Degradation of nonabsorbable polymers	CT – 3, FINAL
Lecture 36	Degradation of absorbable polymers	
13	Nerve Regeneration	
Lecture 37	Parameters for study of nerve regeneration	
Lecture 38	Synthesis of nerve fibers	
Lecture 39	Device for nerve stimulation (TENS and EMS)	
14	Diagnostic Techniques Available for Implant Monitoring	
Lecture 40	Overview of diagnostic techniques for implant monitoring	FINAL
Lecture 41	Evaluation of bone implant interface and Radiographic	
	Evaluation	
Lecture 42	Review	

ASSESSMENT STRATEGY

Comp	Components		nponents Grading		CO	Blooms Taxonomy
Continuous Assessment	Class Test/ Assignment 1-3	20%	CO2, CO3	C2, C3, C5		
(40%)	Class Participation	5%	-	-		
	Midterm	15%	CO3	C4		
			CO 1	C2		
Final	Final Exam 60%		CO 2	C3		
Final Exam		0076	CO 3	C4		
			CO 4	C5		
Total	Marks	100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1. LIMSwiki, Introduction to Implants: Devices, Procedures, and Conditions Requiring Them (Volume 1)

REFERENCE BOOKS

1. Yannas, I. V. Tissue and Organ Regeneration in Adults. New York, NY: Springer, 2001. ISBN: 9780387952147.

REFERENCE SITE

--

6.2.4.3 BME 437 Neuroscience and Neural Engineering

COURSE INFO	RMATION		
Course Code Course Title	: BME 437 : Neuroscience and Neural Engineering	Lecture Contact Hours Credit Hours	: 3.00 : 3.00

PRE-REQUISITE

BME- 105: Human Anatomy

BME- 201: Human Physiology

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course aims to provide fundamental knowledge about neuroscience and the basic mechanism of neural engineering and associated devices.

OBJECTIVE

- 1. To provide knowledge about the fundamental knowledge about the neuroscience
- 2. To equip students to learn about the basic mechanism of neural engineering and associated devices.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to remember the functional connectivity of brain with other organs	C1	1	1	-	1,2	T, MID, F
CO2	Be able to understand the mechanism of neuroscience, neural engineering, and associated devices	C2	1	1,2	-	1,2	T, F
СОЗ	Be able to categorize appropriate neurorehabilitation for various neural disorders.	C4	1	1	-	1	T, F
CO4	Be able to apply neurostimulation techniques to restore nerve activity.	СЗ	6	1	-	1	T, F
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.	C6	3,9,12	5	5	5	PR, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
CI - KUIICIIIOCI	CZ - Ulideistalid	1 C3 - ADDIV	T CT - Allaivzc	CJ - Evaluate	1 CO - Cicaic

COURSE CONTENT

Brain Anatomy: Biology of brain, Structural anatomy of Brain, Functional Neuroanatomy; **Neuroscience Fundamentals:** Molecular Neuroscience, Neural circuits and systems, Cognitive and Behavioral neuroscience, Neuromuscular junction and motor actions, Sensory neuroscience, Neural information processing and learning; Translational neuroscience and medicine, Clinical neuroscience. **Neural Disorders:** Mechanisms underlying neurological disorders of stroke, Parkinson's disease, Alzheimer's disease or epilepsy, Dementia, Autism;

3

131

Nueroplasticity and neurorehabilitation. **Functional Neuroimaging:** Functional neuroimaging basis and applications of EEG, EMG, fMRI, DTI, fNIRS, etc.

Motor System: Pattern of neuro-signal, neurosignal processing, Brain-computer interfaces, Firing rate estimation, Population vectors; **Visual System:** visual evoked potential (VEP), VEP Stimuli, VEP Electrode Placement, VEP Waves and Types, Retinal Implants; **Auditory System:** Auditory evoked potentials, Brainstem auditory evoked potentials, Cochlear Implants; **Neurostimulations:** Introduction to Functional Electrical Stimulation (FES), Muscular FES, Peripheral FES, Electrocortical Stimulation, transcranial magnetic stimulation, deep brain stimulation; **Neuromodulation and Applications:** Noninvasive Neuromodulation Methods and Functional Applications (TMS, rTMS, TDC), Recent Trends of Neural Engineering.

SKILL MAPPING

NI-	No. Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.			2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to remember the functional connectivity of brain with other organs												
CO2	Be able to understand the mechanism of neuroscience, neural engineering, and associated devices	2											
CO3	Be able to categorize appropriate neurorehabilitation for various neural disorders.	2											
CO4	Be able to apply neurostimulation techniques to restore nerve activity.						3		1				
CO5	Be able to critically review recent articles from the scientific literature and identify relevant areas of research opportunities.			3						9			3

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2

TEACHING METHODOLOGY

Final Examination

TEACHING LEARNING STRATEGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Total

Week	Торіс	Assessment
1	Brain Anatomy	
Lecture 1	Biology of brain, Structural anatomy of Brain	
Lecture 2	Functional Neuroanatomy	
Lecture 3	Functional Neuroanatomy	
2	Neuroscience Fundamentals	CT – 1, Final
Lecture 4	Molecular Neuroscience	
Lecture 5	Neuromuscular junction and motor actions	
Lecture 6	Neuromuscular junction and motor actions	
3	Neuroscience Fundamentals	
Lecture 7	Cognitive and Behavioral neuroscience	
Lecture 8	Neural circuits and systems	
Lecture 9	Neural circuits and systems	
4	Neuroscience Fundamentals	
Lecture 10	Sensory neuroscience	
Lecture 11	Neural information processing and learning	
Lecture 12	Translational neuroscience and medicine, Clinical neuroscience	
5	Neural Disorders	
Lecture 13	Mechanisms underlying neurological disorders of stroke, , ,	
Lecture 14	Parkinson's disease	
Lecture 15	Alzheimer's disease or epilepsy	
6	Neural Disorders	Midterm, Final
Lecture 16	Dementia	
Lecture 17	Autism	
Lecture 18	Nueroplasticity and neurorehabilitation	
7	Functional Neuroimaging	
Lecture 19	Experience accompanies and applications of EEC	
Lecture 20	Functional neuroimaging basis and applications of EEG, EMG, fMRI, DTI, fNIRS, etc	
Lecture 21	EMG, IMRI, DTI, IMRS, etc	
	Midterm Break	
8	Motor System	
Lecture 22	Pattern of neuro-signal,	
Lecture 23	Neurosignal processing, Brain-computer interfaces,	
Lecture 24	Firing rate estimation, Population vectors	
9	Visual System	
Lecture 25	Visual evoked potential (VEP), VEP Stimuli,	
Lecture 26	VEP Electrode Placement, VEP Waves and Types	CT – 2, Final
Lecture 27	Retinal Implants	
10	Auditory System	
Lecture 28	Auditory evoked potentials	
Lecture 29	Brainstem auditory evoked potentials	
Lecture 30	Cochlear Implants	
11	Neurostimulations	
Lecture 31	Introduction to Functional Electrical Stimulation (FES)	
Lecture 32	Muscular FES	

Lecture 33	Peripheral FES	
12	Neurostimulation	
Lecture 34	Electrocortical Stimulation	
Lecture 35	Transcranial magnetic stimulation	
Lecture 36	Deep brain stimulation	CT – 3, FINAL
13	Neuromodulation and Applications	
Lecture 37	Noninvasive Neuromodulation	
Lecture 38	Methods and Functional Applications (TMS, rTMS, TDC),	
Lecture 39	wethous and Functional Applications (TWIS, TTWIS, TDC),	FINAL
14	Neuromodulation and Applications	FINAL
Lecture 40	Recent Trends in Neural Engineering	
Lecture 41	Case study on Recent Applications	
Lecture 42	Case study on Recent Applications	

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy		
Comp	onents	Grading		Brooms Taxonomy		
Continuous Assessment (40%)	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4		
	Class Participation	5%	CO3	C2		
	Midterm	15%	CO2	C3		
			CO 1	C2		
Einal	Evom	60%	CO 2	C3		
Final Exam		0070	CO 3	C2		
			CO 4	C4		
Total	Marks	100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

- 1. Dale Purves, George J. Augustine, and et.al, "Neuroscience" Third Edition, Sinauer Associates, 2004.
- 2. Charles Watson, Matthew Kirkcaldie, and George Paxinos, "The Brain: An Introduction to Functional Neuroanatomy," Academic Press, 2010..

REFERENCE BOOKS

1. Metin Akay (Edited), "Handbook of Neural Engineering," IEEE Press, 2007.

REFERENCE SITE

6.2.4.4 BME 439 Biofabrication

COURSE INFO	COURSE INFORMATION						
Course Code Course Title	: BME 439 : Biofabrication	Lecture Contact Hours Credit Hours	: 3.00 : 3.00				
PRE-REQUISITE							

Course Code: BME 303 Course Title: Biomaterials Course Code: ME 291

Course Title: Principles of Mechanical Engineering

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the module that include fabrication technology, protype fundamentals, CNC and CAM manufacturing, liquid, solid and powder based prototyping, biosensor fabrication, tissue regeneration, 3d organ printing and rapid prototyping for bone and prosthetics.

OBJECTIVE

- 1. To develop knowledge and understanding of the commercial use of additive manufacture and 3D printing for biomedical applications.
- 2. To learn how to use biomedical CAD/CAM software to design person specific medicaldevices.
- 3. To develop knowledge and understanding of biomaterials, and specifically how to select and evaluate biomaterials for a specific application.
- 4. To develop knowledge and understanding of bioprinting and biofabrication, and specifically the techniques by which cells and other biological materials may be processed.
- 5. To develop knowledge and understanding of the additive manufacture processes and process chains which can be used in biomedical applications, including those for biofabrication.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Bloom's Taxonomy	РО	СР	CA	KP	Assessment Methods
CO1	Be able to explain different additive manufacturing technologies available in the context of biofabrication.	C2	1	1	-	1,3	T, F
CO2	Be able to understand the benefits of additive manufacture in biomedical applications, bioprinting and biofabrication.	C2	1	1,3	-	1,3	T, F
CO3	Be able to work from a defined need to develop a product based on biomedical additive manufacture, including definition of the product workflow, the manufacturing process chain, and the route to market.	C6	3,4	1	-	1	MID, F
CO4	Be able to evaluate and develop opinions on the 3D printing industry and the resulting biomedical applications.	C5 & C6	2	1	-	1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Offered by BME Department

C1 - Remember	C2 - Understand	C3 - Apply	C4 - Analyze	C5 - Evaluate	C6 - Create
---------------	-----------------	------------	--------------	---------------	-------------

COURSE CONTENT

Introduction to Fabrication Technology, Overview of fabrication technique, Traditional vs Nontraditional machining, Traditional machining: Turning, Milling, Drilling, Boring, Reaming, Nontraditional Machining, Joining technology and Molding, Introduction to various non-traditional machining (Mechanical, Electrical, Electro-thermal and Chemical) process, Introduction to welding (Laser welding, electron beam welding) and soldering, Overview of molding processes (casting, compression molding, injection molding, extrusion molding), Introduction to Rapid Prototyping (RP), Fabrication Technologies, Prototype fundamental, Primary consideration and advantages of rapid prototyping, Classification and functions of different rapid prototyping techniques, Overview of CNC and CAM (Manufacturing), Introduction to computer numerical control (CNC) and computer assisted manufacturing (CAM) techniques, Manual and CAM control of CNC machine (Purpose of G-code, M-code and alphabetical command), Different types of tooling required for CNC mills, lathes and machine centers, Rapid Prototyping Process, Automated process, process chain, Overview of 3D modeling, data conversion and transmission, Preparation of model, building and postprocessing, Liquid-Based Rapid Prototyping Systems, Overview of few techniques involved liquid-based RP system (stereolithography apparatus (SLA), cubital's solid ground curing (SGC)), Overview of solid creation system (SCS) and solid object ultraviolet-laser printer (SOUP), Other liquid-based RP systems and microfabrication, Solid-Based RP systems

Introduction to laminated object manufacturing (LOM), fused deposition modeling (FDM), Techniques of paper lamination technology (PLT), Mult-jet modeling system (MJM), Few more solid-based RP techniques (SSM, MEM, M-RPM etc.), Powder-Based Rapid Prototyping Systems, 3D Systems' Selective Laser Sintering (SLS), Z Corporation's Three-Dimensional Printing (3DP), Optomec's Laser Engineered Net Shaping (LENS),, Fraunhofer's Multiphase Jet Solidification (MJS), RP Data Formation, STL file format and problems regarding, STL file formats, Consequences of building a valid and invalid tessellated model, STL file repair, newly proposed formats and standards for representing layered manufacturing, Process Parameters and General Engineering Applications, Application-Material Relationship, Finishing Processes, Applications in Design, Analysis and Planning, Applications in Manufacturing and Tooling; Aerospace Industry; Automotive Industry; Jewelry Industry, RP techniques for biosensor fabrication, Introduction to uses of RP in biosensor fabrication, RP of microfluidic system, Functionalization of biosensor and biomaterials compatibility, RP for Tissue Regeneration, RP technologies in tissue regeneration, Rationale for using laser assisted bioprinting (LAB), LAB parameters for cell printing, RP for Scaffold Fabrication, 3D Organ Printing – Microvascular, Biomimetic model for microvasculature printing, , Microvasculature printing strategies, Microvasculature post-printing stage, RP for bone and prosthetic limb, Bone: properties, structure, and modelling, The aim in designing a prosthetic limb, A biomimetic approach to design and fabricate Limb

SKILL MAPPING

No.	Course Learning Outcome				PR	.OGl	RAN	1 OU	JTCC	MES	(PO)		
110.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to explain different additive manufacturing technologies available in the context of biofabrication.	3											
CO2	Be able to understand the benefits of additive manufacture in biomedical applications, bioprinting and biofabrication.	3											
CO3	Be able to work from a defined need to develop a product based on biomedical additive manufacture, including definition of the product workflow, the manufacturing process chain, and the route to market.			3	3								
CO4	Be able to evaluate and develop opinions on the 3D printing industry and the resulting biomedical applications.		3										

(Numerical method used for mapping which indicates 3 as high, 2 as medium, and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous and (or) subsequent lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and discussion, Co-operative and collaborative method, Problem based method

COURSE SCHEDULE

Week		Assessment
1	Introduction to Fabrication Technology	
Lecture 1	Overview of fabrication techniques	
Lecture 2	Traditional vs Nontraditional machining	

Lecture 3	Traditional machining: Turning, Milling, Drilling, Boring,	erea by BME Department
	Reaming	
2	Nontraditional Machining, Joining technology and Molding	
Lecture 4	Introduction to various non-traditional machining (Mechanical,	-
	Electrical, Electro-thermal and Chemical) process	
Lecture 5	Introduction to welding (Laser welding, electron beam welding)	-
	and soldering	CT – 1 and Midterm,
Lecture 6	Overview of molding processes (casting, compression molding,	Final
	injection molding, extrusion molding)	
3	Introduction to Rapid Prototyping (RP)	1
Lecture 7	Fabrication Technologies, Prototype fundamental	1
Lecture 8	Primary consideration and advantages of rapid prototyping	-
Lecture 9	Classification and functions of different rapid prototyping	_
	techniques	
4	Overview of CNC and CAM (Manufacturing)	Midterm, Final
Lecture 10	Introduction to computer numerical control (CNC) and computer	-
	assisted manufacturing (CAM) techniques	
Lecture 11	Manual and CAM control of CNC machine (Purpose of G-code,	-
	M-code and alphabetical command)	
Lecture 12	Different types of tooling required for CNC mills, lathes and	
	machine centers	
5	Rapid Prototyping Process	
Lecture 13	Automated process, process chain	
Lecture 14	Overview of 3D modeling, data conversion and transmission	
Lecture 15	Preparation of model, building and postprocessing	
6	Liquid-Based Rapid Prototyping Systems	1
Lecture 16	Overview of few techniques involved liquid-based RP system	
	(stereolithography apparatus (SLA), cubital's solid ground curing	
	(SGC))	
Lecture 17	Overview of solid creation system (SCS) and solid object	
	ultraviolet-laser printer (SOUP)	
Lecture 18	Other liquid-based RP systems and microfabrication	
7	Solid-Based RP systems	
Lecture 19	Introduction to laminated object manufacturing (LOM), fused	
	deposition modeling (FDM)	
Lecture 20	Techniques of paper lamination technology (PLT), Mult-jet	
	modeling system (MJM)	
Lecture 21	Few more solid-based RP techniques (SSM, MEM, M-RPM etc.)]
	MID TERM	
8	Powder-Based Rapid Prototyping Systems	
Lecture 22	3D Systems' Selective Laser Sintering (SLS)	
Lecture 23	Z Corporation's Three-Dimensional Printing (3DP)	1
Lecture 24	Optomec's Laser Engineered Net Shaping (LENS), Fraunhofer's	1
	Multiphase Jet Solidification (MJS)	

9	RP Data Formation	тей бу ВМЕ Верантет
Lecture 25	STL file format and problems regarding STL file formats	
Lecture 26	Consequences of building a valid and invalid tessellated model	
Lecture 27	STL file repair, newly proposed formats and standards for	
	representing layered manufacturing	
10	Process Parameters and General Engineering Applications	
Lecture 28	Application-Material Relationship, Finishing Processes	
Lecture 29	Applications in Design, Analysis and Planning	CT – 2, FINAL
Lecture 30	Applications in Manufacturing and Tooling; Aerospace Industry;	
	Automotive Industry; Jewelry Industry	
11	RP techniques for biosensor fabrication	
Lecture 31	Introduction to uses of RP in biosensor fabrication	
Lecture 32	RP of microfluidic system	
Lecture 33	Functionalization of biosensor and biomaterials compatibility	
12	RP for Tissue Regeneration	
Lecture 34	RP technologies in tissue regeneration	
Lecture 35	Rationale for using laser assisted bioprinting (LAB), LAB	
	parameters for cell printing	
Lecture 36	RP for Scaffold Fabrication	
13	3D Organ Printing Microvascular	
Lecture 37	Biomimetic model for microvasculature printing,	CT – 3, FINAL
Lecture 38	Microvasculature printing strategies	
Lecture 39	Microvasculature post-printing stage	
14	RP for Bone and Prosthetic Limb	
Lecture 40	Bone: properties, structure, and modeling	
Lecture 41	The aim in designing a prosthetic limb	
Lecture 42	A biomimetic approach to design and fabricate Limb	
	I .	

FINAL EXAMINATION

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy		
Components		Grading		Breeins Takeneiny		
Continuous	Class Test/ Assignment 1-3	20%	CO1, CO3, CO4	C2, C4		
Assessment (40%)	Class Participation	5%	CO3	C2		
	Midterm	15%	CO2	C3		
			CO 1	C2		
Final	Evom	60%	CO 2	C3		
Final Exam		00%	CO 3	C2		
			CO 4	C4		
Total Marks		100%				

(CO = Course Outcome, C = Cognitive Domain)

TEXT BOOKS

1.Rapid prototyping: principles and applications, 2nd edition, Chua C. K., Leong K. F., Lim C. S., World Scientific

REFERENCE BOOKS

1.Rapid prototyping of biomaterials: principles and applications, Woodhead Publishing

REFERENCE SITE

--

CHAPTER 7 ANNEX-A

7.1 **Program Outcomes**

PO-1	Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.
PO-2	Problem analysis: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4)
PO-3	Design/development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)
PO-4	Investigation: Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
PO-5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6)
PO-6	The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)
PO-7	Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)
PO-8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
PO-9	Individual work and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
PO-10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

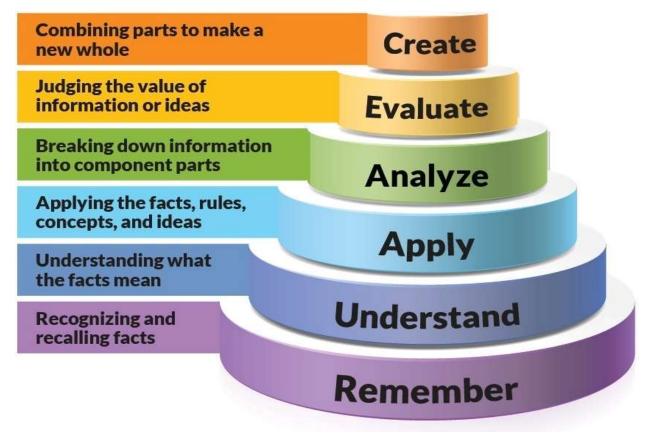
Annex-A

PO-11	Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO-12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

7.2 Knowledge Profile

	Attributes
K1	A systematic, theory-based understanding of the natural sciences applicable to the
	discipline
	Conceptually based mathematics, numerical analysis, statistics and the formal aspects
K2	of computer and information science to support analysis and modeling applicable to the
	discipline
К3	A systematic, theory-based formulation of engineering fundamentals required in the
KS	engineering discipline
	Engineering specialist knowledge that provides theoretical frameworks and bodies of
K4	knowledge for the accepted practice areas in the engineering discipline; much is at the
	forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the engineering
Ku	discipline
	Comprehension of the role of engineering in society and identified issues in engineering
K7	practice in the discipline: ethics and the engineer's professional responsibility to public
K/	safety; the impacts of engineering activity; economic, social, cultural, environmental
	and sustainability
K8	Engagement with selected knowledge in the research literature of the discipline
IXO	

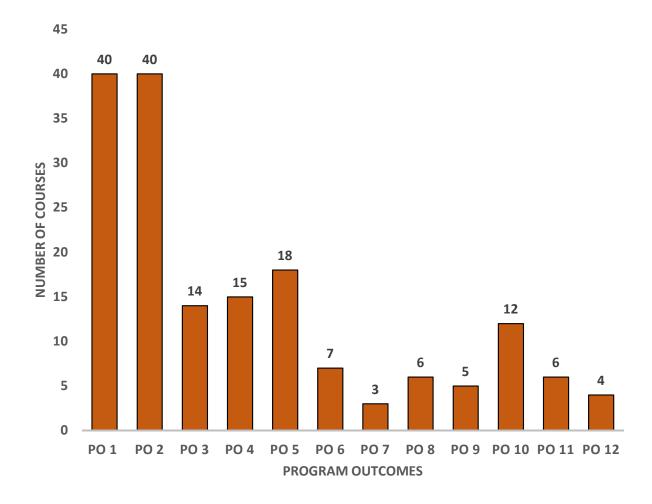
7.3 Range of Complex Engineering Problem Solving


Attributes	Complex Engineering Problems
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues

Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	P4: Involve infrequently encountered issues
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder involvement and conflicting requirements	P6: Involve diverse groups of stakeholders with widely varying needs
Interdependence	P7: Are high level problems including many component parts or subproblems

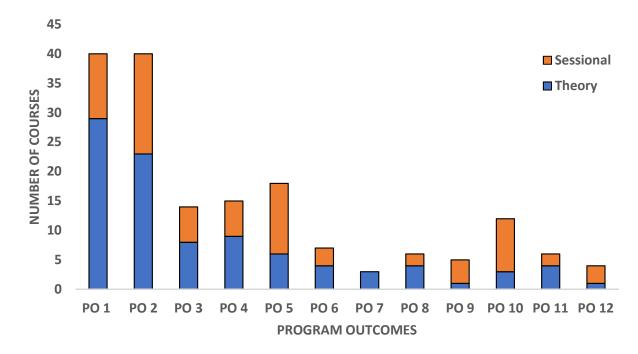
7.4 Range of Complex Engineering Activities

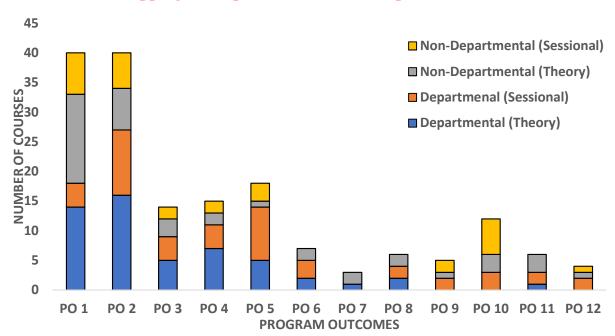
Attributes	Complex activities
Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues
Innovation	A3 : Involve creative use of engineering principles and research-based knowledge in novel ways
Consequences for society and the environment	A4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation
Familiarity	A5 : Can extend beyond previous experiences by applying principles-based approaches

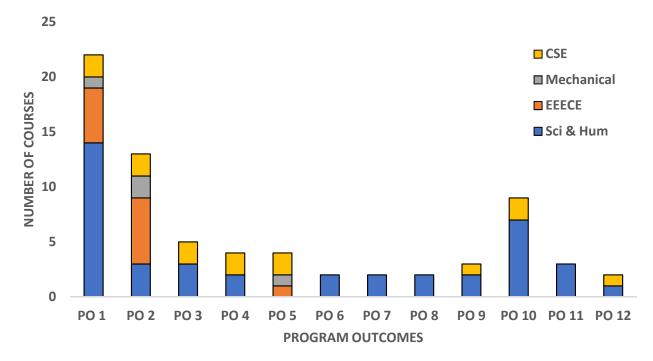

7.5 **Bloom Taxonomy at a Glance**

*Ref: tips.uark.edu

CHAPTER 8 ANNEX-B


8.1 <u>CO-PO Mapping for Entire Program</u>


8.2 **CO-PO Mapping by Different Levels**


8.3 <u>CO-PO Mapping for Sessional and Theory</u>

8.4 CO-PO Mapping for Departmental & Non-Departmental Courses

8.5 <u>CO-PO Mapping for Non-Departmental Courses</u>

